
Tulane Economics Working Paper Series

Winmail3:
An automated email package with an application to

correspondence audit tests

Luca Fumarco

Tulane University

lfumarco@tulane.edu

S. Michael Gaddis

University of California,

Los Angeles

mgaddis@soc.ucla.edu

Iain Snoddy

Analysis Group

iainsnoddy@gmail.com

Working Paper 2110

June 2021

Abstract
Correspondence audits are a popular method to examine discrimination in a causal framework. How-

ever, correspondence audits often require sending hundreds or thousands of emails to subjects. The

Winmail3 package allows users to automatically send emails with Stata through PowerShell, which

is open-source and cross-platform. Researchers can use this package to perform basic email tasks,

such as contacting students or colleagues with standardized messages. Additionally, researchers can

perform more complex tasks that entail sending randomized messages with multiple attachments

from multiple accounts, tasks that are often necessary to conduct correspondence audit tests. This

paper introduces the command and illustrates multiple examples of its application. We believe that

researchers can apply this package to correspondence audit tests to save time and money.

Keywords: correspondence audit tests, field experiments, automation, PowerShell, email

JEL codes: C8, C93

1

WiQmail3: AQ aXWRmaWed email Sackage ZiWh aQ aSSlicaWiRQ WR
cRUUeVSRQdeQce aXdiW WeVWV.

Fumarco, L.,1 Gaddis, S. M.,2 Snoddy, I.,3

1 Tulane University, IZA, GLO; lfumarco@tulane.edu

2 University of California, Los Angeles; mgaddis@soc.ucla.edu

3 Analysis Group; iainsnoddy@gmail.com

Abstract. Correspondence audits are a popular method to examine discrimination in a causal
framework. However, correspondence audits often require sending hundreds or thousands of
emails to subjects. The Winmail3 package allows users to automatically send emails with Stata
through PowerShell, which is open-source and cross-platform. Researchers can use this package
to perform basic email tasks, such as contacting students or colleagues with standardized
messages. Additionally, researchers can perform more complex tasks that entail sending
randomized messages with multiple attachments from multiple accounts, tasks that are often
necessary to conduct correspondence audit tests. This paper introduces the command and
illustrates multiple examples of its application. We believe that researchers can apply this
package to correspondence audit tests to save time and money.

JEL-Classification: C8, C93
Keywords: correspondence audit tests, field experiments, automation, PowerShell, email.

2

1 Correspondence Audit Tests

For nearly sixty years, researchers have used correspondence audit studies to covertly detect

discrimination on the basis of race/ethnicity, gender, age, sexual orientation, gender identity,

disability, and other characteristics (Button et al. 2020; Carlsson and Rooth 2007; Gaddis 2018a,

2018b; Cherry and Bendick 2018; Fumarco 2017; Neumark, Burn, and Button 2019; Pedulla

2016; Quadlin 2018). Audit studies are field experiments in which a researcher manipulates one

or more characteristics (e.g., race or gender) to examine the effects of those characteristics on a

variety of outcomes (e.g., replies to job applications or email responses from bureaucrats). Social

scientists have increasingly used this research method in recent years for two reasons. First,

audits allow researchers to make strong causal claims about discrimination and avoid social

desirability bias that often plagues surveys (Gaddis 2018a; Gaddis and Ghoshal 2019; Pager and

Quillian 2005). Second, audits can now detect discrimination in a variety of contexts due to

online shifts in various applications processes and easy communication with a wide range of

actors (see recent reviews and meta-analyses: Baert 2018; Gaddis 2018a; Gaddis and DiRago

2021; Oh and Yinger 2015; Quillian et al. 2017; Rich 2014; Zschirnt and Ruedin 2016).

In the age of ubiquitous internet correspondence, the shift to correspondence audits ± as

opposed to in-person audits ± has eliminated some methodological concerns while introducing

new ones (Gaddis 2017a, 2017b, 2018a, 2019a, 2019b, 2019c; Heckman and Siegelman 1993;

Lahey and Beasley 2018; Larsen 2020; Vuolo, Uggen, and Lageson 2018; Zschirnt 2019). In

correspondence audits, researchers contact research subjects (e.g., employers, landlords) via

correspondence (e.g., emails, applications) posing as individuals who are interested in an

opportunity or requesting information. However, the process of designing and collecting data for

a correspondence audit is time-consuming and painstaking. Correspondence audits often require

technological knowledge that goes beyond the average researcher¶s standard statistical and

3

coding skill-set. Researchers gain efficiency by mastering techniques ± or borrowing and

adapting code and packages from others ± that reduce workload and automate much of the

process of implementing a correspondence audit study and the ensuing data collection (Lahey

and Beasley 2009, 2018). Some researchers have created solutions that work for specific types of

studies (Lahey and Beasley 2009), created one-off custom solutions (Gaddis 2015; Gaddis and

Ghoshal 2015, 2020), or suggested freelance hiring platforms (Crabtree 2018).

Researchers need simplified and standardized solutions for the different steps that

comprise the data collection process of correspondence audits. Because there are many variations

of correspondence audits across contexts and disciplines, standardizing an automated process of

data collection is a difficult task. However, as Lahey and Beasley (2009) have shown, a semi-

automated package or program can still save resources, even if it focuses on a narrow part of the

design and data collection process, but still permits some customization. Researchers can benefit

from a package that sends emails with a (previously) randomized text to ensure standardization,

and to reduce the burden of data collection.

This article focuses on a Stata package designed to help researchers conserve resources

by reducing the overall burden of data collection. We introduce Winmail3, which can automate

sending emails with randomized components. Although others have developed codes to facilitate

the mass email process in Python, SQL, and R (Chehras 2017; Crabtree 2018), ours is the first

Stata program to do so. We believe this package will be useful to researchers conducting

correspondence audits by simplifying and standardizing the data collection process. In the

following sections of this article, we discuss the details of this command and provide examples

to help the reader better understand the proper usage and full potential of Winmail3.

4

2 A Command for Standardizing and Automatically Sending Email: Winmail3

2.1 Syntax

Winmail3 uses Windows PowerShell to send emails.

This is the syntax of Winmail3:

winmail3 recipient@email.com [, s(subject) b(body) attone(attachment1)

atttwo(attachment2) folder(folder name) html(email html) par(paragraphs)

mailps(name_ps1_file) psloc(folder_name) smtpport(smtp port) smtpsserver(smtp server)

from(name) sleep(time gap between emails) ufile(username_file) pfile(password_file)

cc(cc_recipient) bcc(bcc_recipient) nossl]

2.2 Options

recipient@email.com is the recipient of the email. It has to be specified.

s(subject) declares the email subject. It has to be specified.

b(body) specifies the body of the email to be sent. The body should be input as a single

string with blocks of text being parsed by ³|´. Each substring separated by ³|´ will be numbered

and modified using html wrappers if specified. Text inputted as ³line1 | line2 | line3´ will be

treated as 3 separate blocks of text and numbered ³1, 2, 3´. It has to be specified.

attone(attachment1) gives the location and name of one file to be included as an

attachment to the email.

 atttwo(attachment2) gives the location and name of one file to be included as an

attachment to the email.

attone and atttwo do not stand as the order or priority of the files: you can send atttwo

even if attone is empty. attone and atttwo allow you to send only one file each, but the location

of these two files might different.

5

folder(folder_name) gives the folder location for all of the attachments you want to send

at once. There is no limit to the amount of files that can be extracted from the folder. If you want

all of the files in the folder, after the folder name you write ³*.*´; assuming the folder is called

³robe´ then folder_name = ³C:\Users\luca_\Desktop\robe*.*´. If you want all of the files with a

certain extension, the second * has to be substituted by the extension, e.g., ³*.pdf´; assuming

you the folder is called ³robe´ then folder_name = ³C:\Users\luca_\Desktop\robe*.pdf´

html(email html) provides the html to be included in the email. The html provided

modifies the text provided in body. As each block of text parsed by ³|´ in body is numbered,

html should be provided as wrappers around these numbers. Users should input a string where

html wrappers are placed around numbers, with each number representing a substring of body.

For example, ³<i>1 2</i> 3 4´ makes all text in substrings 1 and 2 italic and text in

substring 2 bold. If html is specified it must include a number for every substring. If there are 4

inputted substrings and html takes input " 1 2 3" then the fourth string will be missing

from the email. You can create paragraphs using html or using par.

par(paragraphs) provides paragraph breaks between substrings parsed by ³|´ in body.

The input to this option should take the format of a numbered list, for example par(1 3 5) creates

a new paragraph following substrings 1, 3 and 5.

mailps(name_ps1_ file) gives the name of the .ps1 file, default is ³mailps.ps1´.

psloc(folder_name) gives the folder location of where the .ps1 file will be saved, default

location is working directory.

smtpport(smtp port) gives the smtp port number. By default it is set to that used by gmail.

smtpsserver(smtp server) gives the smtp server address which by default is the gmail

smtp server.

6

from(name) is the name of the sender, default is username.

sleep(time gap between emails) is the time gap between multiple email, default is 3.000.

ufile(username_file) gives the location and filename of the user¶s email address saved as

plain text in a .txt file; default location is working directory. The file extension should not be

included. The file name has to be specified.

pfile(password_file) gives the location and filename of the user¶s password saved as a

secure string in a .txt file; default location is working directory. The file extension should not be

included. The file name has to be specified.

cc(cc_recipient) is the email address included as a cc to the email.

bcc(bcc_recipient) is the email address included as a bcc to the email.

nossl specifies that the Secure Sockets Layer (SSL) to establish a connection is not used.

3 Technical Details

PowerShell was originally a Windows component exclusively; however, on 18 August

2016 it was made open-source and cross-platform. If you do not have already PowerShell (e.g. if

you have an Apple computer), you can download it here:

https://github.com/PowerShell/PowerShell

Emails are sent using the Send-MailMessage cmdlet (information here:

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-

mailmessage).

 Winmail3 sends email using SMTP (Simple Mail Transfer Protocol). By allowing for the

inclusion of html the emails created can be quite versatile. User credentials are captured by the

program, the recipients email address and features to be included in the email. A .ps1 script is

https://github.com/PowerShell/PowerShell
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-mailmessage
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/send-mailmessage

7

created and run using Windows PowerShell. This file is stored on the user¶s system in a

specified location along with user¶s credentials.

Users must specify the location of their email address and password. By allowing for

paragraphing and the inclusion of html, users are provided with substantial flexibility in the

format of their email.

By default, the smtp settings are set for the use of gmail accounts. These settings can be

modified to work for other email account types. For instance, to send an email using outlook.com

the stmpserver should be set to ³smtp-mail.outlook.com´ and the stmpport to ³587´. Different

email accounts may require users to modify settings prior to the use of smtp. For instance, gmail

requires that users allow access to less secure apps before an email can be sent using smtp via

PowerShell. The speed of email delivery may also differ across services.

Users who have not used Windows PowerShell before should note that by default it may

not have sufficient administrative privileges to perform the operations in Winmail3. First time

users should run ³Set-ExecutionPolicy RemoteSigned´ when running Windows PowerShell as

administrator and follow the instructions on screen. This command specifies that scripts created

on the current system and files with a digital signature may be run. This keeps PowerShell

privileges quite strict but is sufficient for this program as the .ps1 script executed is created

locally.

Owed to the configuration of Send-MailMessage cmdlet, some location and file names

are restricted, and some options are mandatory. While the locations of attone(attachment1) and

atttwo(attachment2) can contain blank spaces, the location of folder(folder_name) cannot. The

location within parenthesis in pfile(password_file), ufile(username_file), psloc(folder_name)

8

cannot contain blank spaces. The following options are mandatory: ufile(username_file),

pfile(password_file), and s(subject).

You cannot specify attone(attachment1) and/or atttwo(attachment2), when you specify

already folder(folder_name).

While the b(body) is not mandatory within Send-MailMessage cmdlet, here it is

mandatory to prevent mistakes that would increase chances of being detected.

Winmail3 requires tknz be installed.

4 Examples

In this section, we discuss the basic usage of the command in some common cases.

4.1 One standard email

Let us assume the user wants to send only one simple email²without selecting the

message components from a previously randomized dataset. Below, we go through a few basic

versions.

4.1.1 Example 1: Sending one email with attachment and cc

With this example, the user creates two text files with the email provider account details

and then sends a simple email.

Let us create txt files where we store the password and the username of the email:

clear all
cd ³C:\User\\oXUcd´

file open m\file XVing ³paVVZoUd.W[W´, write replace
file write myfile ³mypassword´
file close myfile
file open m\file XVing ³XVeUname.W[W´, write replace
file ZUiWe m\file ³\oXU_email´
file close myfile

9

Now, the let us send a one liner email and provide the location and name of both

password and username files. Let us further assume that your email provide is outlook, you want

to attach a txt file and put in cc friend2.

Let us give Stata the command:

winmail3 friend@email.com, b(hello friend) s(hi) ufile(C:User\username)
pfile(C:User\password) smtpport(587) smtpserver(smtp-mail.outlook.com)
attone(C:\User\file.txt) cc(friend2@email.com)

This will create an email which looks like:

hello friend

4.1.2 Example 2: Sending an email with paragraphs

With this example, the user sends a three liner email. Let us assume that the user has

already created the two txt files, with email account password and username, that is,

³paVVZoUd.W[W´ and ³XVeUname.W[W´.

Create a new paragraph following the first and second substrings:

local body "hello friend, | How are you doing? | Best, Friend"
winmail3 friend@email.com, b(`body') s(hi) par(1 2) ufile(C:User\username)
pfile(C:User\password) smtpport(587) smtpserver(smtp-mail.outlook.com)

This will create an email which looks like:

hello friend,
How are you doing?
Best, Friend

4.1.3 Example 3: Sending an email with html and bold words

With this example, the user sends a one liner email with some words in bold. Let us

assume that the user has already created the two txt files, with email account password and

username, that is, ³paVVZoUd.W[W´ and ³XVeUname.W[W´.

local bod\ ³hello fUiend, _ HoZ aUe \oX doing?_ BeVW, FUiend´
winmail3 friend@email.com, b(`body') s(hi) html(1 2 3) ufile(C:User\username)
pfile(C:User\password) smtpport(587) smtpserver(smtp-mail.outlook.com)

10

This will create an email which looks like:

hello friend, How are you doing? Best, Friend

Note that if we erroneously specified html(1 2) the output would be:

hello friend, How are you doing?

4.1.4 Example 4: Sending an email with html and paragraphs

With this example, the user sends a three liner email with html. Let us assume that the

user has already created the two txt files, with email account password and username, that is,

³paVVZoUd.W[W´ and ³XVeUname.W[W´. With html, you do not need to use par().

The following uses of the Winmail3 command are equivalent:

local body "hello friend, | How are you doing?| Best, Friend"
winmail3 friend@email.com, b(`body') s(hi) html(1 2

 3) ufile(C:User\username)
pfile(C:User\password) smtpport(587) smtpserver(smtp-mail.outlook.com)

winmail3 friend@email.com, b(`body') s(hi) par(2) ufile(C:User\username)
pfile(C:User\password) smtpport(587) smtpserver(smtp-mail.outlook.com)

Both commands give the same result:

hello friend, How are you doing?
Best, Friend

4.1.5 Example 5: Many emails from randomized dataset

Let us assume the user wants to send many emails, over several days, with previously

randomized components of the message²this is the usual setting of a correspondence audit test.

Below, we create a one-observation dataset and show how to feed the email components to a

loop for sending emails through Winmail3.

Let us assume that the user has already created the two txt files, with email account

password and username, that is, ³paVVZoUd.W[W´ and ³XVeUname.W[W´.

11

4.1.5.1 Create a dataset with one observation

This part of the example is to create the dataset with components of the message and

email information.

clear all
cd ³C:\User\yourcd´

set obs 1

Generate receiver email

cap drop emailfriend
gen emailfriend= ³UeceiYeU@rossoneri.iW´

Generate access email and its record

cap drop myemail username password
gen m\email= ³myemail@nerazzurri.it´
gen XVeUname= ³XVeUname´ //note that username is the name of

the file ³XVeUname.W[W´ without
extension

gen paVVZoUd= ³paVVZoUd´ //note that password is the name of
the file ³paVVZoUd.W[W´ without
extension

cap drop server port
gen VeUYeU = ³smtp-mail.outlook.com´ if myemail== ³myemail@nerazzurri.it´
gen poUW = 587 if m\email== ³myemail@nerazzurri.it´ //note that 587 is the real

outlook.com port

Generate components of the message:

cap drop name surname salutation friend valediction
gen name= ³BaUbeUa ´
gen surname= ³DelMonfeUUaWo´
gen salutation= "Dear"
gen friend= " friend,"
gen valediction= "Ciao"

cap drop *_sent
gen fiUVW_VenW= ³Have you seen the new Stata command? Winmail3.´
gen Vecond_VenW= ³It allows you to send emails through Stata, with the help of PowerShell.´

cap drop return subject
gen UeWXUn= ³_´

12

gen subject = ³Great news´

Put the message together

cap drop body
egen body = concat(salutation friend return first_sent return second_sent return valediction
return name surname)

Generate the date variable that tells us when a given email should be sent; we are going

to loop over this variable when we send the emails.

cap drop date_send
gen daWe_Vend= ³dd/mm/\\\\´

cap drop datestand
gen datestand = daily(date_send, "DMY") //Stata loops over the number of days

since January 1, 1960
format datestand %td

VaYe ³C:\User\yourcd\originaldaWaVeW.dWa´, replace

save ³C:\User\yourcd\ZoUkingdaWaVeW.dWa´, Ueplace

4.1.5.2 Conduct the experiment

On each day you conduct the experiment, and thus have to send emails, you have to run

the following do file.

clear all
cd ³C:\User\yourcd´

use ³C:\User\yourcd\ ZoUkingdaWaVeW.dWa´, clear

Generate today date

display "`c(current_date)'"
cap drop today
gen today=daily("`c(current_date)'", "DMY")
format today %td

cap drop identifier
gen identifier= _n if datestand==today //Stata gives an increasing number

only to those emails for which the

13

planned date for the email delivery
equals today

Tell Stata to create temporary information on when the email is actually sent:

cap drop date_sent
gen date_sent = ³´
cap drop time_sent
gen Wime_VenW = ³´

Loop over identifier for which datestand==today:

set trace on
set more off
sum identifier if datestand==today
forval i= `r(min)'/`r(max)' {

cap drop `bodystr'
tempvar bodystr
gene `bodystr'=_n if identifier==`i' & datestand==today
summ `bodystr', meanonly
local index=r(mean)
local b=body[`index']

cap drop `serverstr'
tempvar serverstr
gene `serverstr'=_n if identifier==`i' & datestand==today
summ `serverstr', meanonly
local index=r(mean)
local s=server[`index']

cap drop `portstr'
tempvar portstr
gene `portstr'=_n if identifier==`i' & datestand==today
summ `portstr', meanonly
local index=r(mean)
local po=port[`index']

cap drop `userstr'
tempvar userstr
gene `userstr'=_n if identifier==`i' & datestand==today
summ `userstr', meanonly
local index=r(mean)
local u=username[`index']

cap drop `passstr'
tempvar passstr

14

gene `passstr'=_n if identifier==`i' & datestand==today
summ `passstr', meanonly
local index=r(mean)
local pa=password[`index']

cap drop `friendstr'
tempvar friendstr
gene `friendstr'=_n if identifier==`i' & datestand==today
summ `friendstr', meanonly
local index=r(mean)
local r=emailfriend[`index']

cap drop `subjectstr'
tempvar subjectstr
gene `subjectstr'=_n if identifier==`i' & datestand==today
summ `subjectstr', meanonly
local index=r(mean)
local sbj=subject[`index']

 winmail3 `r', ///
 b(`b') par(1 2 3 4) s(`sbj') ///
 smtpport(`po') smtpserver(`s') ///
 ufile(`u') ///
 pfile(`pa') ///

folder("C:\User\yourdc\ApplicationPackage*.*") /// //this is the folder
with all of the
application material
of your fictitious
person (e.g. one cv
and one cover letter in
pdf format and your
one professional
picture in jpg)

 pVloc(³C:\User\yourcd\´)

 replace date_sent="`c(current_date)'" if identifier==`i'
 replace time_sent="`c(current_time)' " if identifier==`i'

}
replace deliverydate = daWe_VenW if deliYeU\daWe== ³´
replace deliverytime = Wime_VenW if deliYeU\Wime== ³´

VaYe ³C:\User\yourcd\ workingdataset.dta´, replace

15

5 Discussion

5.1 Feedback

You can find this package at https://sites.google.com/site/lucafumarco/stata-

codespackages. If you want to report a bug or request a feature, please send an email to Luca

Fumarco or Iain Snoddy.

5.2 Conclusion

The Winmail3 package allows users to automatically send emails with Stata through

PowerShell, which is open-source and cross-platform. Using this package researchers can

perform basic email tasks, such as contacting students or colleagues with standardized messages,

or more complex ones, such as conducting correspondence audit tests. We believe that the

specific application of Winmail3 to correspondence audit tests will help users save time and

resources. Correspondence audit tests typically require sending hundreds or thousands of

individual emails; with Winmail3 users can send these emails faster and for free, significantly

slashing the usual experimental budget.

16

References

Baert, Stijn. 2018. ³Hiring Discrimination: An Overview of (almost) All Correspondence

Experiments since 2005.´ Pp. 63±77 in Audit Studies: Behind the Scenes with Theory, Method,

and Nuance, edited by S. M. Gaddis. Cham, Switzerland: Springer.

Button, Patrick, Eva Dils, Benjamin Harrell, Luca Fumarco, and David Schwegman.

2020. ³Gender Identity, Race, and Ethnicity Discrimination in Access to Mental Health Care:

Preliminary Evidence from a Multi-Wave Audit Field Experiment.´ NBER Working Paper.

Available at: https://www.nber.org/papers/w28164

Carlsson, Magnus, and Dan-Olof Rooth. 2007. ³Evidence of Ethnic Discrimination in the

Swedish Labor Market Using Experimental Data.´ Labour Economics, 14(4):716-29.

Chehras, N. 2017. Automating correspondence study applications with python and SQL:

Guide and code. Mimeo.

Cherry, Frances, and Marc Bendick. 2018. ³Making It Count: Discrimination Auditing

and the Activist Scholar Tradition.´ Pp. 45±62 in Audit Studies: Behind the Scenes with Theory,

Method, and Nuance, edited by S. M. Gaddis. Cham, Switzerland: Springer.

Crabtree, Charles. 2018. ³An Introduction to Conducting Email Audit Studies.´ Pp. 103±

117 in Audit Studies: Behind the Scenes with Theory, Method, and Nuance, edited by S. M.

Gaddis. Cham, Switzerland: Springer.

Fumarco, Luca. 2017. ³Disability Discrimination in the Italian Rental Housing Market: A

Field Experiment with Blind Tenants.´ Land Economics, 93(4):567-84.

Gaddis, S. Michael. 2015. ³Discrimination in the Credential Society: An Audit Study of

Race and College Selectivity in the Labor Market.´ Social Forces 93(4):1451±79.

Gaddis, S. Michael. 2017a. ³How Black Are Lakisha and Jamal? Racial Perceptions from

Names Used in Correspondence Audit Studies.´ Sociological Science 4(19):469±89.

https://www.nber.org/papers/w28164

17

Gaddis, S. Michael. 2017b. ³Racial/Ethnic Perceptions from Hispanic Names: Selecting

Names to Test for Discrimination.´ Socius 3:1±11.

Gaddis, S. Michael. 2018a. ³An Introduction to Audit Studies in the Social Sciences.´ Pp.

3±44 in Audit Studies: Behind the Scenes with Theory, Method, and Nuance, edited by S. M.

Gaddis. Cham, Switzerland: Springer.

Gaddis, S. Michael. 2018b. Audit Studies: Behind the Scenes with Theory, Method, and

Nuance. Cham, Switzerland: Springer.

Gaddis, S. Michael. 2019a. ³Understanding the µHow¶ and µWhy¶ Aspects of Racial-

Ethnic Discrimination: A Multimethod Approach to Audit Studies.´ Sociology of Race and

Ethnicity, 5(4):443-55.

Gaddis, S. Michael. 2019b. ³Signaling Class: An Experiment Examining Social Class

Perceptions from Names Used in Correspondence Audit Studies.´ SSRN Working Paper.

Available at https://papers.ssrn.com/abstract=3350739

Gaddis, S. Michael. 2019c. ³Assessing Immigrant Generational Status from Names:

Evidence for Experiments Examining Racial/Ethnic and Immigrant Discrimination.´ SSRN

Working Paper. Available at https://papers.ssrn.com/abstract=3022217

Gaddis, S. Michael. 2021. ³The Honeypot Audit: Reversing the Correspondence Audit

Method.´ SSRN Working Paper. Available at https://papers.ssrn.com/abstract=3179222

Gaddis, S. Michael, and Nicholas DiRago. 2021. ³Housing Audit Studies in the Social

Sciences.´ SSRN Working Paper. Available at https://papers.ssrn.com/abstract=3796335

Gaddis, S. Michael, and Raj Ghoshal. 2015. ³Arab American Housing Discrimination,

Ethnic Competition, and the Contact Hypothesis.´ Annals of the American Academy of Political

and Social Science 660(1):282±99.

https://papers.ssrn.com/abstract=3350739
https://papers.ssrn.com/abstract=3022217
https://papers.ssrn.com/abstract=3179222
https://papers.ssrn.com/abstract=3796335

18

Gaddis, S. Michael, and Raj Ghoshal. 2019. ³Dynamic Racial Triangulation: Examining

the Racial Order Using Two Experiments on Discrimination among Millennials.´ SSRN Working

Paper. Available at https://papers.ssrn.com/abstract=3022208

Gaddis, S. Michael, and Raj Ghoshal. 2020. ³Searching for a Roommate: A

Correspondence Audit Examining Racial/Ethnic and Immigrant Discrimination among

Millennials.´ Socius: Sociological Research for a Dynamic World.

Gaddis, S. Michael, and Edvard Nergård Larsen. 2021. ³Auditing Audit Studies: The

Effects of Name Perception and Selection on Social Science Measurement of Racial

Discrimination.´ SSRN Working Paper. Available at https://papers.ssrn.com/abstract=3022207

Heckman, James J., and Peter Siegelman. 1993. ³The Urban Institute Audit Studies:

Their Methods and Findings.´ Pp. 187±258 in Clear and Convincing Evidence: Measurement of

Discrimination in America, edited by M. Fix and R. J. Struyk. Washington, DC: The Urban

Institute Press.

Lahey, Joanna N., and Ryan A. Beasley. 2009. Computerizing audit studies. Journal of

Economic Behavior & Organization, 70(3), 508±514.

Lahey, Joanna N., and Ryan A. Beasley. 2018. ³Technical Aspects of Correspondence

Studies.´ Pp. 81±101 in Audit Studies: Behind the Scenes with Theory, Method, and Nuance,

edited by S. M. Gaddis. Cham, Switzerland: Springer.

Larsen, Edvard N. 2020. ³Induced Competition in Matched Correspondence Tests:

Conceptual and Methodological Considerations. Research in Social Stratification and Mobility.

Neumark, David, Ian Burn, and Patrick Button. 2019. ³Is It Harder for Older Workers to

Find Jobs? New and Improved Evidence from a Field Experiment.´ Journal of Political

Economy¸127(2):922-70.

https://papers.ssrn.com/abstract=3022208
https://papers.ssrn.com/abstract=3022207

19

Oh, Sun Jung, and John Yinger. 2015. ³What Have We Learned from Paired Testing in

Housing Markets?´ Cityscape 17(3):15±60.

Pager, Devah, and Lincoln Quillian. 2005. ³Walking the Talk? What Employers Say

Versus What They Do.´ American Sociological Review 70(3):355±80.

Pedulla, David. 2016. ³Penalized or Protected? Gender and the Consequences of

Nonstandard and Mismatched Employment Histories.´ American Sociological Review,

81(2):262-89.

Quadlin, Natasha. 2018. ³The Mark of a Woman¶s Record: Gender and Academic

Performance in Hiring.´ American Sociological Review, 83(2):331-60.

Quillian, Lincoln, Devah Pager, Ole Hexel, and Arnfinn Midtb¡en. 2017. ³The

Persistence of Racial Discrimination: A Meta-analysis of Field Experiments in Hiring over

Time.´ Proceedings of the National Academy of Sciences 114(41):10870±5.

Rich, Judith. 2014. ³What Do Field Experiments of Discrimination in Markets Tell Us?

A Meta-analysis of Studies Conducted since 2000.´ IZA Working Paper. Available at

https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-in-

markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000.

Vuolo, Mike, Christopher Uggen, and Sarah Lageson. 2018. ³To Match or Not to Match?

Statistical and Substantive Considerations in Audit Design and Analysis.´ Pp. 119±40 in Audit

Studies: Behind the Scenes with Theory, Method, and Nuance, edited by S. M. Gaddis. Cham,

Switzerland: Springer.

Zschirnt, Eva. 2019. ³Research Ethics in Correspondence Testing: An Update.´ Research

Ethics, 15(2):1-21.

https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-in-markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000
https://www.iza.org/publications/dp/8584/what-do-field-experiments-of-discrimination-in-markets-tell-us-a-meta-analysis-of-studies-conducted-since-2000

20

Zschirnt, Eva, and Didier Ruedin. 2016. ³Ethnic Discrimination in Hiring Decisions: A

Meta-analysis of Correspondence Tests 1990±2015.´ Journal of Ethnic and Migration Studies

42(7):1115±34.

