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Abstract

In a GMM setting this paper analyzes the problem in which we have two sets of moment conditions,

where two sets of parameters enter into one set of moment conditions, while only one set of parame-

ters enters into the other, extending Prokhorov and Schmidt’s (2009) redundancy results to nonsmooth

objective functions, and obtains relatively efficient estimates of interesting parameters in the presence

of nuisance parameters. One-step GMM estimation for both set of parameters is asymptotically more

efficient than two-step procedures. These results are applied to Wooldridge’s (2007) inverse probability

weighted estimator (IPW), generalizing the framework to deal with missing data in this context. Two-

step estimation of βo is more efficient than using known probabilities of selection, but this is dominated

by one-step joint estimation. Examples for missing data quantile regression and instrumental variable

quantile regression are provided.

1 Introduction

This paper extends Prokhorov and Schmidt (2009) analysis to the estimation of a general GMM problem

with nonsmooth objective functions in which nuisance parameters are present. The framework developed

encompasses several interesting problems in econometrics such as, missing data, censored or truncated data,

treatment effects, instrumental variables etc. More importantly, by allowing nonsmooth objective functions,
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the analysis extends to models that have gained additional importance in recent years, e.g., LAD, quantile

regression, censored LAD, quantile treatment effects and IVQR.

The results rely on Newey and McFadden (1994) to obtain the asymptotic variance of the GMM estimator

under less restrictive assumptions on the smoothness of the objective functions. For that consider two sets of

moment conditions, the first includes both the parameters of interest (βo) and certain nuisance parameters

(γo) while the second subset includes only the nuisance parameters. By defining four competing estimators

based on different assumptions regarding the information available about these nuisance parameters and

the moment conditions utilized, results about the relative efficiency of each proposed estimator are derived.

These results provide guidance to applied work in the presence nuisance parameters.

As discussed by Prokhorov and Schmidt (2009), joint estimation of nuisance parameters and parameters of

interest is more efficient than a two-step procedure or knowing the true nuisance parameters and disregarding

the second set of moment conditions. This fact is due to the information contained in correlation between

both sets of moment conditions which is useful, even when γo is known. Using only the first set of moment

conditions and known values of γo in the estimation procedure does not use the additional information

embedded in the second set of moment conditions. These results are shown to hold when the objective

functions are nonsmooth.

The general results are directly applicable to missing data problems and encompass Wooldridge’s (2002b,

2007) Inverse Probability Weighting (IPW) estimators, extending its use for nonsmooth objective functions

under the usual assumptions about the selection process, typically referred to as ”ignorability”. The general

estimation results described confirm the validity of the result described by Wooldridge (2007), i.e., that it is

better (in an efficiency sense) to estimate the selection probabilities, even if the latter are known. In other

terms, we obtain more efficient estimates for βo if we estimate γo than if we use the true γo. This result is

”puzzling” because knowledge of γo, if properly exploited, cannot be harmful. Previous works discussed this

result, such as Wooldridge (2002b, 2007) in the context of IPW. Hirano et al. (2003), Hitomi et al. (2008)

and Prokhorov and Schmidt (2009) addressed the problem for the smooth objective function case. Even

though this issue have been considered by Chen, Hong and Tarozzi (2008) in a semiparametric context with

nonsmooth objective functions, the parametric approach proposed here provide, as a novelty, the conditions

under which this result is valid and, furthermore, shows that the two-step estimator is usually dominated

by a one-step joint estimation procedure that uses both the weighted moment conditions and the conditions

associated with the selection model.

There have been several papers devoted to general theories of estimation in settings where nonsmooth

objective functions are allowed, following Daniels (1961) and Huber (1967). Studies that allow for estima-

tion of models based on nonsmooth objective functions include, among others, Pollard (1985), Pakes and

Pollard (1989), Newey and McFadden (1994, section 7). Recent studies have approached the problem of
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nonsmoothness with focus on semiparametric models, see Chen, Linton and Van Keilegom (2003) for a gen-

eral estimation approach; Chen, Hong and Tarozzi (2008) for an approach for missing data problems with

nonparametric first stage; and Cattaneo (2010) for an approach on the estimation of multi-valued treatment

effects on a semiparametric framework.

The remainder of the paper is organized as follows. Section 2 sets up the general GMM framework used

in the analysis and presents results regarding efficiency and redundancy of the estimators proposed, as well

as estimators for the asymptotic variances of the parameters estimated. Section 3 studies the IPW approach

to missing data problems proposed by Wooldridge (2002b, 2007), extending its scope to nonsmooth objective

functions. Section 4 provides examples of the uses of the framework proposed here by, first, considering a

model for the conditional quantile in a context with missing data; secondly I consider a simplified IVQR

model as proposed by Chernozhukov and Hansen (2005, 2006). Section 5 concludes.

2 General Estimation Problem

Let ω∗ ∈ Q∗ ⊂ Rdim(ω∗) be a random vector; θ∈ Θ ⊂ RP be a parameter vector, Θ is a compact set, and

the population condition

go(θo) = E[g(ω∗, θo)] = 0 (1)

where g : Q∗ ×Θ→Rm is a vector of known real-valued moment functions.

Newey and McFadden (1994) have shown consistency (Theorem 2.6) and asymptotic normality (Theorem

7.2) of the Generalized Method of Moments (GMM) estimator that uses the population moment condition

above. These theorems cover the case in which the moment functions, g(·), are allowed to be nonsmooth.

The GMM estimator minimizes the objective function

gn(θ)′Ŵgn(θ) (2)

where Ŵ converges in probability to W , the appropriate positive semidefinite weighting matrix and ω∗i , i =

1, ..., n, are i.i.d. Both Theorem 2.6 and 7.2 from Newey and McFadden (1994) will be used to derive the

asymptotic variance of the estimators. The first regards the consistency of the GMM estimator, relies on

relatively weak conditions, and allow for discontinuities in the objective function. The second theorem

demonstrates the asymptotic normality of the GMM estimator under a certain form of nonsmoothness of

the objective function. As shown by Pollard (1985) the differentiability of the objective function g(ω∗i , θ) can

be replaced by the differentiability of go(θ) for the purpose of obtaining the asymptotic normality of these

estimators. The key condition to allow for nonsmooth objective functions is a ”stochastic equicontinuity”

assumption that guarantees uniform convergence in probability of the linear approximation of go(θ) by

g(ω∗i , θ) in a shrinking neighborhood of θo. This is similar to the stochastic differentiability condition in

3



Pollard (1985) and primitive conditions are available in Pollard (1985), Andrews (1994) and Chen, Linton

and Van Keilegom (2003).

Suppose that θ can be partitioned into subsets of parameters (β′, γ′)′∈ B×Γ ⊂ Rp1 ×Rp2 and that g(·)
can be partitioned into subsets of functions (g1(·)′, g2(·)′)′ as defined below. For notational convenience, ω∗

is suppressed in the following discussion, then

E[g1(βo, γo)] = 0 (3)

E[g2(γo)] = 0 (4)

where β ∈ B, γ ∈ Γ, g1(·) and g2(·) are m1 and m2 vectors of known functions, respectively (m = m1 +m2).

Note that the second set of moment conditions does not depend on β while the first set of moment conditions

depend on the full parameter set θ. Let gn1(θ) = n−1
n∑
i=1

g1(ω∗i , θ) and gn2(γ) = n−1
n∑
i=1

g2(ω∗i , γ),the

sample analogues of the population moments. The framework developed here is valid for the general case of

overidentification, i.e., m1 > p1 and m2 > p2. This, and the appropriate rank conditions guarantees that two

step estimation is possible. Let the asymptotic covariance matrix for the moment functions, Σ, be defined

as

Σ = V [g(θo)] ≡


C11 C12

C21 C22




where we assume Σ is finite and nonsingular so its inverse exists:

Σ−1 ≡


C

11 C12

C21 C22


 =


C
−1
11 (I + C12E

−1C21C
−1
11 ) −C−1

11 C12E
−1

−E−1C21C
−1
11 E−1




since Σ (and Σ−1) is symmetric C12 = C ′21 and the second equality holds (see White (1984), p.80) for

E ≡ C22 − C21C
−1
11 C12.

Define the matrix of derivatives as

G ≡ Oθgo(θo) = OθE[g(θo)] ≡


G11 G12

0 G22




G11 ≡ ∇βE[g1(βo, γo)]

G12 ≡ ∇γE[g1(βo, γo)]

G22 ≡ ∇γE[g2(γo)]

where the lower off-diagonal matrix equals zero since the second set of moment conditions does not depend

on β.

Following Prokhorov and Schmidt (2009), define four different possible GMM estimators that differ in

which moment conditions are used and/or whether γ is treated as known.
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Definition 1 Call the estimator of θo that minimizes

gn(θ)′Σ−1gn(θ) (5)

the ONE-STEP estimator.

This is the usual GMM estimator that uses all the available orthogonality conditions jointly to estimate

βo and γo.

Definition 2 Call the estimator of βo that minimizes

gn1(β, γo)
′C−1

11 gn1(β, γo) (6)

and γo is treated as known the KNOW-γ estimator.

This estimator ignores the second set of orthogonality conditions 4, treating γo as a known vector of

parameters and estimating βo using only the information available in the first set of moment assumptions.

Definition 3 Call the estimator of βo that minimizes

gn(β, γo)
′Σ−1gn(β, γo) (7)

and γo is treated as known the KNOW-γ-JOINT estimator.

This is the GMM estimator for βo in the form considered by Qian and Schmidt (1999). In this case, one

has information about the true values of γo but still uses both set of moments conditions in obtaining an

estimate for βo.

Definition 4 Call the estimator of θo obtained in the following fashion, the TWO-STEP estimator:

(i) the estimator γ̂ is obtained by minimizing

gn2(γ)′C−1
22 gn2(γ) (8)

(ii) the estimator β̂ is obtained by minimizing

gn1(β, γ̂)′C−1
11 gn1(β, γ̂) (9)

and γ̂ is treated as given.

This is the sequential estimator that uses only the second set of moment conditions 4 to obtain a consistent

estimator of the unknown parameter vector γo and then uses only the first set of moment conditions 3 to

obtain the estimator of βo. This estimator is widely used in the applied economics literature and encompasses

several common applications.
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The estimators defined above depend on a known Σ. In practice, Σ is not known and has to be replaced

by an initial consistent estimate. Nevertheless, this does not impact the asymptotic variance of the feasible

estimators.

The asymptotic variances of these estimators are derived directly from Newey and McFadden (1994)

Theorem 7.2.

Theorem 1 Let VONE−STEP , VKNOW−γ ,VKNOW−γ−JOINT and VTWO−STEP denote the asymptotic vari-

ance of ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-STEP respectively. Then, under the conditions

described in Newey and McFadden (1994) Theorems 2.6 and 7.2,

VONE−STEP =
(
G′Σ−1G

)−1
(10)

VKNOW−γ =
(
G′11C

−1
11 G11

)−1
(11)

VKNOW−γ−JOINT =
(
G′11C

11G11

)−1
(12)

VTWO−STEP = BΣB′ (13)

where,

B =


B11 B12

0 B22




with

B11 = −
(
G′11C

−1
11 G11

)−1
G′11C

−1
11

B12 =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22

B22 = −
(
G′22C

−1
22 G22

)−1
G′22C

−1
22

Proof. All proofs are provided in the appendix.

Since the structure of the variances presented in 1 is identical to the structure found by Prokhorov and

Schmidt (2009) for the case in the objective functions are smooth, it is possible to analyze the relative

asymptotic efficiency of these estimators by applying Theorem 2.2 on Prokhorov and Schmidt (2009).1 Thus

extending their result to allow nonsmooth objective functions

Corollary 1 For the estimators defined above as the ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-

STEP with asymptotic variances given by 10, 11, 12 and 13, respectively, the following statements hold:

1. KNOW-γ-JOINT is no less efficient than ONE-STEP, KNOW-γ and TWO-STEP for βo.

2. If C12 = 0 then KNOW-γ-JOINT and KNOW-γ are equally efficient for βo.

1I denote the asymptotic variance of θ̂ as V meaning that
√
n(θ̂ − θo) converges in distribution to N(0, V ).
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3. If G12 = 0 then TWO-STEP and KNOW-γ are equally efficient for βo.

4. If C12 = 0 and G12 = 0, then ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-STEP are equally

efficient for βo, and ONE-STEP and TWO-STEP are equally efficient for γo.

5. ONE-STEP is no less efficient than TWO-STEP.

6. If m1 = p1 then the ONE-STEP and TWO-STEP estimates of γo are equal.

7. If m1 = p1 and m2 = p2 then the ONE-STEP and TWO-STEP estimates are equal for both βo and

γo.

8. If m1 = p1 and C12 = 0 then the ONE-STEP and TWO-STEP estimates are equally efficient for both

βo and γo.

9. If G12 = C12C
−1
22 G22, then KNOW-γ-JOINT and ONE-STEP are equally efficient for βo.

10. If G12 = C12C
−1
22 G22, then ONE-STEP, KNOW-γ-JOINT and TWO-STEP are no less efficient for

βo than KNOW-γ.

Statement 1 shows, as expected, that KNOW-γ-JOINT dominates the other estimators. This is an

intuitive result since the known value of γo is at least as efficient as any estimate of γo, and KNOW-γ-

JOINT uses the full set of relevant moment conditions.

Statement 2 is the result Qian and Schmidt (1999), where it is shown that using additional moment

conditions that include no unknown parameters (as is the case for KNOW-γ-JOINT) improves efficiency

except in the special case in which C12 = 0. In other words, the second set of moments is redundant in the

estimation of βo, Prokhorov and Schmidt (2009) call this M-redundancy.

Statement 3 gives the condition under which the first stage estimation of the nuisance parameter γo does

not affect the asymptotic behavior of the second stage estimate of βo. This result is similar to the one

shown in Wooldridge (2002a), however in this case we are dealing with a nonsmooth objective function and,

therefore, the restriction G12 ≡ ∇γE[g1(βo, γo)] = 0 differs from the one proposed by Wooldridge.

Statement 4 provides conditions under which the ONE-STEP, KNOW-γ, KNOW-γ-JOINT and TWO-

STEP estimators are equally efficient for βo, hence the use of the additional moment conditions in 4 by the

ONE-STEP, KNOW-γ-JOINT and TWO-STEP estimators does not improve the precision of the estimated

parameters of interest as in the previous statement; and the knowledge of γo does not help in estimating βo.

This holds if the two sets of moment conditions are asymptotically uncorrelated and γ is not present in the

first set of moment conditions.

Statement 5 is the usual result that in general, sequential estimation procedures are less efficient than

joint (one step) estimation.

Statement 6, 7 and 8 follow directly from Ahn and Schmidt (1995) and show that the GMM separability

holds in the framework that allows non-smooth objective functions. The GMM estimates for γo are not

improved by the inclusion of an equal number of additional moment conditions and parameters. It can be
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shown that if G11 is nonsingular, the ONE-STEP estimator for βo can be written in terms of the ONE-STEP

estimator of γo using the equation gn1(β̂, γ̂) = C12C
−1
22 gn2(γ̂) (see appendix for details). Thus, as described

by Prokhorov and Schmidt (2009) the ONE-STEP and TWO-STEP estimators for βo will be derived from the

same equation as long as gn2(γ̂) = 0, which will be true under exact identification of γo, and asymptotically

equally efficient if C12 = 0, since the moment conditions will be asymptotically uncorrelated, not adding to

the information set exploited by ONE-STEP relatively to TWO-STEP.

Statement 9 and 10 are direct extensions of Prokhorov and Schmidt (2009). Statement 9 says that

KNOW-γ-JOINT and ONE-STEP are equally efficient for the estimation of βo, which means that knowledge

of γo is not useful in terms of the efficiency of the estimates for βo if we are using the full set of moment

conditions and G12 = C12C
−1
22 G22.

Statement 10 shows that under the same condition about G12, KNOW-γ is dominated by ONE-STEP,

KNOW-γ-JOINT and TWO-STEP. Knowledge of γo is not useful in the estimation of βo in this case, and

the KNOW-γ estimator does not use the information in the second set of moment conditions, which is useful

unless C12 = 0.

The statements presented in Corollary 1 show that the results for GMM redundancy presented by

Prokhorov and Schmidt (2009) extend to GMM estimation procedures based on nonsmooth objective func-

tions.

Under the conditions of parts 9 and 10 of Corollary 1, the following corollary can be obtained.

Corollary 2 If G12 = C12C
−1
22 G22 and G22 is invertible, then

V (β̂TWO−STEP ) =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 DoC

−1′
11 G11

(
G′11C

−1
11 G11

)−1
(14)

Additionally, if G11 is invertible, then

V (β̂TWO−STEP ) = G−1
11 DoG

−1′
11 (15)

where

Do = E [eie
′
i]

ei =
[
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

]

Note that ei is the residual of the linear projection of the first set of moments conditions on the second set

of moment conditions. This result is useful in the estimation of the asymptotic variance of the estimators, as

I discuss below. Unfortunately, this applies only if the second set of moment conditions is exactly identified

for formula 14 and if both sets of moment conditions are exactly identified for formula 15.
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An arresting issue is to obtain estimates of the variance matrices described in theorem 1. The nonsmooth-

ness of the objective function creates some obstacles to the usual estimations procedures. As described by

Lee (2006) the fact that the estimates for the variances depend on the derivative of the expectation of the

estimating function in the nonsmooth case warrants a more careful approach in estimating the variances

used for inference.

A general approach that work in most cases is offered in Newey and McFadden (1994), and consists on

obtaining consistent estimators for the separate components of the variance matrix. For estimating Σ or its

relevant components a standard estimator is available. This procedure can be used in a first-step to obtain

consistent estimates of the appropriate weighting matrix for the estimation procedure.

Σ̂ = n−1
n∑
i=1

g(ω∗i , θ̂)g(ω∗i , θ̂) Ĉ11 = n−1
n∑
i=1

g1(ω∗i , θ̂)g1(ω∗i , θ̂)

Ĉ12 = n−1
n∑
i=1

g1(ω∗i , θ̂)g2(ω∗i , γ̂) Ĉ22 = n−1
n∑
i=1

g2(ω∗i , γ̂)g2(ω∗i , γ̂)

To be able to plug this estimates on the equations derived in Theorem 1 we need to obtain estimates of

G, which can be difficult to obtain due to the nonsmoothness of the objective function. In this approach an

estimate of G is obtained by numerical derivatives. Following Newey and McFadden (1994) let ei denote the

ith unit vector, εn denote a small positive constant that depends on the sample size. Define the estimators

for G and its components as

Ĝj =
1

2εn

[
n−1

n∑

i=1

g(ω∗i , θ̂ + ejεn)− g(ω∗i , θ̂ − ejεn)

]

Ĝ11j =
1

2εn

[
n−1

n∑

i=1

g1(ω∗i , β̂ + ejεn, γ̂)− g1(ω∗i , β̂ − ejεn, γ̂)

]

Ĝ12j =
1

2εn

[
n−1

n∑

i=1

g1(ω∗i , β̂, γ̂ + ejεn)− g1(ω∗i , β̂, γ̂ − ejεn)

]

Ĝ22j =
1

2εn

[
n−1

n∑

i=1

g2(ω∗i , γ̂ + ejεn)− g2(ω∗i , γ̂ − ejεn)

]

Where the subscript j denotes the jth column of the matrix being estimated. Newey and McFadden(1994)

Theorem 7.4 shows that if εn converges to zero and
√
nεn converges to infinity as n gets larger, these

estimators will be consistent for the terms of the variances presented in theorem 1.

However, these estimators are cumbersome and not practical. As emphasized by Newey and McFadden,

the choice of εn is a difficult problem and the formulation described above, using a unique value for εn would

be good only if the estimated parameters had been scaled to have similar magnitudes. If that is not done,

we would have to pick different εn for different components.
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On specific cases, other estimators are available. As discussed in Newey and McFadden (1994) if g(ω∗, θ̂)

is differentiable with probability one, with Oθg(ω∗, θ̂) that is continuous at θo with probability one and

dominated by an integrable function in a neighborhood of θo, then Ĝ = n−1
n∑
i=1

Oθg(ω∗i , θ̂) is a consistent

estimator for G. Hence, the more standard estimator is available and would be easier to implement.

Clearly, alternatives could be available for specific moment conditions. Section 4 provides the example

for the leading case of IPW for linear quantile regression.

Even in this case, the calculation of the matrix B that is present in the asymptotic variance of the

TWO-STEP estimator could be cumbersome. For the cases in which the conditions from part 9 and 10

of Corollary 1 hold, namely G12 = C12C
−1
22 G22, Corollary 2 offers a different approach to the problem

of estimating the asymptotic variance in those cases (even though we still need to resort to one of the

estimators above to obtain Ĝ11). We can obtain an estimate of the matrix E [eie
′
i] by regressing the first

set of moment conditions on the second set of moment conditions in the sample to obtain the residuals

êi = g1(ω∗i , β̂, γ̂)−
[
n−1

n∑
i=1

g2(ω∗i , γ̂)g1(ω∗i , β̂, γ̂)

] [
n−1

n∑
i=1

g2(ω∗i , γ̂)g2(ω∗i , γ̂)

]−1

g2(ω∗i , γ̂), and calculating the

sample analogue of the matrix D̂ = n−1
n∑
i=1

êiê
′
i. Unfortunately, this simple procedure is valid only for the

asymptotic variance of the TWO-STEP estimator under the condition above and under exact identification

of at least the second set of moment conditions.

For most of the relevant problems, we could use a bootstrap procedure to obtain consistent estimates of

the variance of θ̂ directly, but these could be computationally demanding for models in which the solution of

the optimization problem for both sets of moment conditions require numerical optimization of the objective

function.

3 Estimation with missing data

This section specializes the results of the section 2 to a model in which missing data is allowed in a framework

that expands that proposed by Wooldridge (2002b, 2007) to allow nonsmooth objective functions.

Consider ω ∈ Q ⊂ Rdim(ω) a random vector with density f(ω); β∈ B ⊂ Rp1 a parameter vector, where

B is a compact set. Suppose there is the population moment equation

go(βo) = E[g(ω, βo)] = 0 (16)

where g : Q × B→Rm1 is a vector of known real-valued moment functions with m1 ≥ p1, so βo could be

overidentified. Assume βo is the unique solution to 16. I am interested in estimating βo.

Note that the moment conditions presented above hold in the unselected population. Assume nonrandom

sampling occurs and it is characterized by a selection indicator, s ∈ {0, 1}, such that ωi is observed if and

only if si = 1. All or part of ωi is not observed when si = 0.
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The GMM estimator based on 16 using the selected sample, in effect makes the empirical moments

n−1
n∑
i=1

sig(ωi, β) close to zero. These empirical moments are the sample analogues of the population moments

of the form

E [sg(ω, β)] = 0 (17)

which are referred to as the unweighted selected population moments (Prokhorov and Schmidt 2009 and

Wooldridge 2002b). The name emphasizes that they are evaluated at the selected rather than the full

population of interest and differentiates them from the weighted selected population moments defined below.

The selectivity problem occurs exactly because 17 may not hold; in other words, the value βo that solves

16 may not also solve 17 (Prokhorov and Schmidt 2009). If that happens, the estimate for βo obtained

through this procedure is not generally consistent. In fact, its consistency and potential solutions for the

data selection problem will depend on the relationship between the selection process and both the dependent

and independent variables.

3.1 Data Selection under Ignorability

A straightforward solution is to solve the nonrandom sampling problem using inverse probability weighting

(IPW) as shown by Wooldridge (2002b, 2007). To be able to use IPW we need some variables that are rea-

sonable predictors of selection as described in Wooldridge (2007). This is formally stated as an ”ignorability”

of selection assumption.

Assumption 1 (Wooldridge, 2007, Assumption 3.1) (i) ωi is observed whenever si = 1;

(ii) For a random vector zi such that P (si = 1 | ωi, zi) =P (si = 1 | zi) ≡p(zi);

(iii) For all z ∈ Z ⊂ RJ , p(z) > 0;

(iv) zi is observed whenever si = 1.

Item (ii) in this assumption requires that s ⊥ ω | z. In other words, the selection has to be independent

of the y and x conditional on z. As discussed at length by Wooldridge (2007), assumption 1 encompasses a

variety of selection schemes common in the missing data literature, including ”missing at random”, ”variable

probability sampling”, ”selection on observables” etc. This allows, for example, that the probability of

observing ωi to depend on the stratum in which ωi falls into; or that zi is observed only along with ωi; or

that partial information is known about the incompletely observed data. Assumption 1 does not apply to

the ”selection on unobservables”2 case as generally used in econometrics. I will not explore these possibilities

directly here, referring the reader to Wooldridge (2007).

Assume that a conditional density determining selection is correctly specified and that a maximum

likelihood estimator of the selection model is available.

2A quantile regression estimator for the case wheen selection is on unobservables is provided by Buchinsky (1998)
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Assumption 2 (Wooldridge, 2007, Assumption 3.2) (i) G(z, γ) is a parametric model for p(z), where

γ ∈ Γ ⊂ Rp2 and G(z, γ) > 0 for all z ∈ Z and γ ∈ Γ;

(ii) There exists γo in the interior of Γ such that p(z) = G(z, γo);

(iii) For a random vector vi such that D(vi | ωi, zi) = D(vi | zi), the estimator γ̂ solves a conditional

maximum likelihood problem of the form

max
γ∈Γ

n∑

i=1

ln [f(vi | zi, γ)] (18)

where f(v | z, γ) > 0 is a conditional density function known up to the parameters γo, and si = h(vi, zi) for

some nonstochastic function h(·, ·);

(iv) The solution to 18 has the first-order representation

√
n(γ̂ − γo) =

{
E
[
di (γo) di (γo)

′]}−1

(
n−

1
2

n∑

i=1

di (γo)

)
+ op(1)

with di (γ) ≡ ∇γf(vi|zi,γ)′

f(vi|zi,γ) , which is the p2 × 1 score vector for the MLE.

The assumption above requires standard regularity conditions about G(z, γ), including smoothness of

the parametric model. Even though this restricts the possibilities to model the selection process, it includes

the most used probability models used in the literature. By doing so, we concentrate on the impacts of

nonsmoothness in the model of interest and provide results about the use of IPW in correcting sample

selection for those cases. Assumption 2 covers the cases presented by Wooldridge (2002b) in which the

conditional log-likelihood was for a binary response model. The advantage of using this slightly more

complicated framework is to allow zi to be only partially observed and to permit si to be a function of

another random variable vi which includes a broader class of selection problems. For a deeper discussion on

the extensions allowed by assumption 2, see Wooldridge (2007).

Note that the MLE estimator for γo described above can be obtained in a GMM setting as follows.

Let γ̂ the Maximum Likelihood Estimator (MLE) of γo, that is γ̂ solves

max
γ∈Γ

n∑

i=1

ln [f(vi | zi, γ)]

Define g2(z, γ,s) ≡ d (γ) =
∇γf(vi|zi,γ)′

f(vi|zi,γ) and gn2(γ) ≡ n−1
∑n
i=1 g2(zi, γ, si). Hence, gn2(γ)

p−→ g2o(γ) ≡
E [g2(z, γ, s)]. Then, the problem above is characterized by the following first order conditions

n−1
n∑

i=1

g2(zi,γ̂,si) = n−1
n∑

i=1

[∇γf(vi | zi, γ̂)′

f(vi | zi, γ̂)

]

= n−1
n∑

i=1

di (γ̂) = op(n
− 1

2 )
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and,

E [g2(z, γo,s)] = E [d (γo)] = 0

Under assumption 1, Wooldridge (2002b) lemma 3.1. is valid, then

E

{[
s

G(z, γo)

]
g(ω, βo)

}
= E

[(
s

p(z)

)
g(ω, βo)

]
= E [g(ω, βo)]

Which suggests that we use the sampling probabilities to consistently estimate βo Consider the weighted

selected population moments that weight 17 by the inverse of the selection probability:

E

[(
s

G(z, γo)

)
g(ω, βo)

]
= 0 (19)

Given an estimator for γo, γ̂, we can form G(zi, γ̂) for all i with si = 1 and we are able to obtain consistent

estimates for βo by using the weighted selected population moments 19 as described in Wooldridge (2007).

Note that, by the Law of Large Numbers and Law of Iterated Expectations, assumptions 1, 2 and consistency

of γ̂ for γo (see Wooldridge 2002b, theorem 3.1).

n−1
n∑

i=1

si
G(zi, γ̂)

g(ωi,β)
p−→ E

[
si
p(zi)

g(ωi, β)

]

= E

[
E

[
si
p(zi)

g(ωi, β) | ωi,zi
]]

= E

[
p(zi)

p(zi)
E [g(ωi, β) | ωi,zi]

]

= E [g(ωi, β)] = go(β)

Hence, this provides a set of valid moment conditions that could be used to estimate βo.

3.1.1 Efficiency Comparisons

The relative efficiency of the estimators for βo that use IPW to correct a missing data problem under

assumption 1 and 2 can be analyzed under the framework developed in section 2. Consider the two sets of

valid moment conditions,

E [g1(ω, z, β, γ, s)] = E

[
s

G(z, γ)
g(ω, β)

]
= 0 (20)

E [g2(z, γo, s)] = E

[∇γf(v | z, γ)′

f(v | z, γ)

]
= 0 (21)

Any of the estimators discussed in section 2 can be used, differing on the set of moment conditions used

and the knowledge about the weights.

Under the assumptions on the moment conditions and the selection process discussed in this section, the

following lemma holds.
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Lemma 1 If the conditions of Newey and McFadden (1994) Theorems 2.6 and 7.2; Assumptions 1 and 2

hold, and the moment conditions are defined by 20 and 21, then G12 = C12C
−1
22 G22.

By using this result, we can see that under these assumptions, the results of Corollary 1 can be directly

applied to this specific case.

Theorem 2 Under the conditions of Lemma 1 , ONE-STEP, KNOW-γ-JOINT and TWO-STEP are no

less efficient for βo than KNOW-γ. Furthermore, ONE-STEP and KNOW-γ-JOINT are equally efficient

for βo.

Hence, unless C12 = 0 (in which case the four estimators would be equally efficient), using ONE-STEP or

TWO-STEP that estimate γo through MLE produce more efficient estimates for βo than using known weights

(if we knew them) in the KNOW-γ estimator. The KNOW-γ-JOINT estimator is as efficient as ONE-STEP

as well, indicating that the knowledge of γo is not useful in terms of the efficiency of the estimates for βo.

The efficiency gains relatively to KNOW-γ are due to the use the information in the second set of moment

conditions.

Therefore, the result described in Wooldridge (2002b, 2007) that KNOW-γ is inefficient relative to TWO-

STEP, extends to a larger set of estimators in which the original set of unweighted moment conditions is

nonsmooth as it was discussed by Chen, Hong and Tarozzi (2008) and Hitomi et al. (2008). In these cases

we are better off estimating the weights by a conditional MLE than knowing them. Nonetheless, the TWO-

STEP estimator is dominated by both ONE-STEP and KNOW-γ-JOINT and those should be used to obtain

relatively efficient estimates of βo.

It is important to note that the framework developed in this paper does not extend directly to semi-

parametric cases in which the probability of selection is estimated nonparametrically. That can be a serious

inconvenience when we have limited information about the selection process and would benefit from a more

flexible estimator to those probabilities. However, as it is shown in the section 3.2 we can obtain consistent

estimates for βo even if using misspecified selection probabilities, as long as the data selection is exogenous.

3.2 Data Selection under Exogeneity of Selection

The literature in sample selection has long established that sample selection does not necessarily cause

bias in unweighted estimators. As shown in Wooldridge (2007) if selection is exogenous conditional on the

vector of covariates x the estimators of interest using the unweighted moment conditions will be consistent

and, in fact, more efficient (Prokhorov and Schmidt, 2009) than their weighted counterparts. Following

Wooldridge (2007), the properties of the estimators obtained under exogenous selection but with potential

misspecification of the selection model are analyzed. Consider that we have a potentially misspecified

model for the probability of selection given by G(z, γ∗), which is not necessarily equal to the true p(zi).

14



Assume that the estimate γ̂ obtained based on that model is consistent to some parameter vector γ∗ and
√
n(γ̂ − γ∗) = Op(1).

In this case, the weighted moment condition

n−1
n∑

i=1

si
G(z, γ̂)

g(ωi, βo)
p

−→ E

[
s

G(z, γ∗)
g(ω, β)

]
(22)

instead of E [g(ω, β)] = 0, as seen in section 3.1.

Assume that the selection process is exogenous conditional on z.

Assumption 3 (Wooldridge, 2007, Assumption 4.1) (i) ωi is observed whenever si = 1;

(ii) For a random vector zi such that P (si = 1 | ωi, zi) =P (si = 1 | zi) ≡p(zi);

(iii) zi is observed whenever si = 1.

(iv) βo ∈ B solves the problem

E [g(ω, β) | z] = 0

for all z ∈ Z.

This assumption is the same as in Prokhorov and Schmidt (2009) and as shown by them in Lemma 4.1

and Theorem 4.1 (p.53), which are not altered due to the use of nonsmooth objective functions, it implies

E [g(ω, β) | z, s] = 0

Any function of z and s is uncorrelated with g(ω, β) and both weighted and unweighted moment conditions

hold in the selected sample for any weight that is a function of z and s. Therefore, the weighted moment

condition in equation 22 holds in the selected sample for any misspecified model G(z, γ∗), including the

unweighted moment conditions, when G(z, γ∗) = 1.

Hence, under exogeneity of selection, the IPW estimator for βo is consistent, regardless of the misspec-

ification of the model for probability of selection3. This robustness is an important feature of the IPW

procedure and adds to its usefulness in applications.

4 Examples

4.1 Quantile Regression under Ignorability of Selection

Quantile regression is one of the main motivations for this research. As an example of the use of the results

of this paper, consider I am interested in estimating the conditional quantile function (CQF) of a random

variable y conditional on a vector of explanatory variables x. This is defined by,

Qτ (Y | X) = inf {y : FY (y | X) ≥ τ}
3This conclusion is equivalent to Theorem 4.1 in Wooldridge (2007), extending it for nonsmooth objective functions.
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where τ ∈ (0, 1) indexes the τ th quantile of the conditional distribution of Y . Suppose that the

CQF is a linear model

Y = X ′βτo + ε

and that Qτ (ε | X) = 0. In the population, βo solves the following problem

min
β∈B

E [ρτ (Y −X ′βτ )]

where, ρτ (u) = (τ − 1 [u ≤ 0])u

Given a random sample from the population of size n, it is possible to obtain consistent estimates of βo

by a standard quantile regression (QR) estimator.

min
β∈B

n−1
n∑

i=1

ρτ (yi − x′iβτ )

Note that the minimization problem has the following of the first order conditions and sample analogue

(Buchinsky, 1998)

E {(τ − 1 [y − x′βτo ≤ 0])x} = 0

n−1
n∑

i=1

(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi = op(n

− 1
2 )

Hence, we frame this problem as a GMM estimator that uses as moment conditions the first order

conditions of the QR problem that identify βτo . However, suppose a random sample of (y, x) is not observed.

The selection mechanism is such that the full vector (yi, xi) is observed only if a certain binary variable that

equals the unity, si = 1, if si = 0 at least some part of (yi, xi) is not observed. Then, in the selected sample,

we can only estimate

n−1
n∑

i=1

si

{(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi

}
= op(n

− 1
2 )

which is the sample analogue of

E [s [(τ − 1 [y − x′βτo ≤ 0])x]] = 0

but the value βτo that solves the population moment condition does not necessarily solve the selected popula-

tion moment condition. Additionally, assume that the probability of selection can be written as a parametric

function of some vector of variables (xi, zi) and parameters γo and that conditional on zi, the terms of xi

that are not included in zi and yi are irrelevant for the probability of selection (Assumption 1).

P (si = 1 | yi, xi, zi) =P (si = 1 | zi) ≡p(zi, γo)
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In this situation, we can estimate consistent and asymptotically normal estimates for βτo using the

selected sample by IPW. Note that,

E

[
s

p(z, γo)
[(τ − 1 [y − x′βτo ≤ 0])x]

]

= E

[
E

[
s

p(z, γo)
[(τ − 1 [y − x′βτo ≤ 0])x] | x, y, z

]]

= E

[
E [s | z]
p(z, γo)

[(τ − 1 [y − x′βτo ≤ 0])x]

]

= E [(τ − 1 [y − x′βτo ≤ 0])x] = 0

Therefore, we can estimate βτo by using those weighted moment conditions. Naturally, we would need to

estimate the weights if they are unknown.

Let the true selection model be a standard binary response model for simplicity. Then, estimate the

selection of probability by MLE, or more conveniently, a GMM procedure that uses the first order conditions

of the MLE for the selection model as moment conditions. The MLE maximization problem and its first

order condition are given by, respectively,

max
γ∈Γ

N∑

i=1

{si ln [p(zi, γ)] + (1− si) ln [1− p(zi, γ)]} (23)

n−1
n∑

i=1

[
∇′γp(zi, γ̂)

si − p(zi, γ̂)

p(zi, γ̂) (1− p(zi, γ̂))

]
= op(n

− 1
2 ) (24)

where the estimator for γo is defined as the vector γ̂. Again, 24 is the sample analogue of the following

moment condition,

E

[
∇′γp(z, γo)

s− p(z, γo)
p(z, γo) (1− p(z, γo))

]
= 0

Hence, we have two sets of moment conditions that can be used to estimate both the selection model

and the conditional median model. The GMM estimator in this case would be given by any of the four

estimators proposed in section 2, with

gn1(θ) = n−1
n∑

i=1

si
p(zi, γ)

{(τ − 1 [yi − x′iβτ ≤ 0])xi}

gn2(γ) = n−1
n∑

i=1

[
∇′γp(zi, γ)

si − p(zi, γ)

p(zi, γ) (1− p(zi, γ))

]

the variance of the estimates will depend on the choice of estimator as stated by Theorem 1.

To estimate the variance of the estimated parameters we need to obtain valid estimates for the components
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of G in the variance of θ̂.Note that, for example,

G11 ≡ ∇βE[g1(βo, γo)] = ∇βE
[

s

p(z, γo)
[(τ − 1 [y − x′βτo ≤ 0])x]

]

= ∇βE
[
E

[
s

p(z, γo)
[(τ − 1 [y − x′βτo ≤ 0])x] | z, x, s

]]

= ∇βE
[

s

p(z, γo)

(
τ − Fy|z,x,s(x′βτo)

)
x

]

= E

[
s

p(z, γo)
fy|z,x,s(x

′βτo)x
′x

]

hence, consistent estimates can be obtained by the sample analogues,

Ĝ11 = n−1
n∑

i=1

si
p(zi, γ̂)

f̂y|z,x,s(x
′
iβ̂τ )x′ixi

Ĝ12 = n−1
n∑

i=1

−∇
′
γp(zi, γ̂)

[p(zi, γ̂)]
2 si

[(
τ − 1

[
yi − x′iβ̂τ ≤ 0

])
xi

]

Ĝ22 = n−1
n∑

i=1

[
∇′γp(zi, γ̂)

(
si − p(zi, γ̂)

p(zi, γ̂) (1− p(zi, γ̂))

)2

∇γp(zi, γ̂)

]

where the last equality is a direct application of GIME and f̂y|z,x,s(·) is a suitable estimator of the conditional

density of y, commonly by a kernel estimator.

Note that the same asymptotic variance formula for the KNOW-γ estimator for β̂τ is obtained by a

simple extension of the results for weighted quantile regression presented in Koenker (2005) as shown in

claim 1 in the appendix.

Since the conditions in Theorem 2 hold, we will obtain more efficient estimates by estimating the in-

verse probability weights than using the ”true” weights, characterizing the result described in the literature

(Wooldridge 2002b, 2007). The relatively more efficient estimate for βτo is given by the one-step estimator

that jointly estimates both the probability weights and the parameters of interest, βτo .

One interesting point to note is that, even this relatively restrictive model for the CQF, which assumes

linearity, can be very insightful about the potentially nonlinear true CQF. As discussed in detail by Angrist,

Chernozhukov and Fernandez-Val (2006), a linear quantile regression provides the best linear approximation

of the true CQF in the sense that it minimizes a weighted mean square error loss function. So even if we

have reasons to believe that the true CQF in which we are interested is nonlinear, the use of a linear quantile

regression in the example above would provide us with the ”best linear approximation” to it in a similar

way that a linear OLS model offers the best linear approximation to the conditional mean function. Hence,

by using IPW to correct the selection bias caused by missing data we can recover this linear approximation

to the CQF of interest, even if we don’t know its true specification.

Nevertheless, this framework can be applied to nonlinear conditional quantiles of the form Qτ (Y | X) =
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m (X,βτo), with

gn1(θ) = n−1
n∑

i=1

si
p(zi, γ)

{(τ − 1 [yi −m (xi, βτ ) ≤ 0])∇βm (xi, βτ )}

Ĝ11 = n−1
n∑

i=1

− si
p(zi, γ̂)

f̂y|z,x,s
(
m
(
xi, β̂τ

))
∇′βm

(
xi, β̂τ

)
∇βm

(
xi, β̂τ

)

Ĝ12 = n−1
n∑

i=1

−∇
′
γp(zi, γ̂)

[p(zi, γ̂)]
2 si

[(
τ − 1

[
yi −m

(
xi, β̂τ

)
≤ 0
])
∇βm

(
xi, β̂τ

)]

and the remaining equations unchanged.

4.2 Instrumental Variable Quantile Regression

Consider a simplified version of the IVQR estimator described in Chernozhukov and Hansen (2006). We

focus on the basic linear model that allow for heterogeneous effects given by,

Yd = q(d, x, τ) = d′ατ + x′βτ

where d is a vector of (potentially endogenous) multi-valued treatment variables and x is a vector of covariates.

Under the conditions described in Assumption 1 of Chernozhukov and Hansen (2006), the IVQR estimator of

the vector of parameters (α(τ)′, β(τ)′)′ proposed in that paper approximately solves the estimating equation4:

n−1
n∑

i=1

(1 [yi − d′iατ − x′iβτ ≤ 0]− τ)(x′i, Φ̂
′
iτ )′ = op(n

− 1
2 )

where Φ̂iτ ≡ Φ̂τ (τ, xi, zi) is a vector of transformations of the instruments. In a simple model Φ̂iτ can be

formed by the least squares projection of d on z and x (and its powers) (Chernozhukov and Hansen, 2006,

2008). In that simple case, we could write the sample analogue of the moment conditions that will identify

the parameters of the model as

gn1(θ) = n−
1
2

n∑

i=1

{(1 [yi − d′iατ − x′iβτ ≤ 0]− τ)(x′i, (x
′
i, z
′
i)γ)′}

gn2(γ) = n−1
n∑

i=1

(x′i, z
′
i)
′[di − (x′i, z

′
i)γ]

Where gn2(γ)Hence, the analysis developed in section 2 can be applied to the IVQR estimator proposed by

Chernozhukov and Hansen (2005, 2006, 2008) and the results shown above are valid in its scope. Nevertheless,

it is important to note that the framework developed in this paper does not extend directly to semiparametric

cases in which the ”first stage” is estimated nonparametrically. That can be a serious inconvenience when

we have limited information about the form of the transformation on the vector of instruments that would

be preferable in estimating IVQR.

4For simplicity I’m assuming that the weights V̂iτ in Chernozhukov and Hansen (2006) are equal to the unit.
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5 Conclusion

This paper (i) extends the GMM efficiency and redundancy results of Prokhorov and Schmidt (2009) to

nonsmooth objective functions; (ii) analyzes the extent to which these results could be useful in the context

of inverse probability weighting (IPW) as a mechanism to correct missing data issues, thus allowing its use

in the LAD and quantile regression framework; (iii) verifies the conditions under which the weighting using

known probabilities of selection leads to a less efficient estimate than using estimated probabilities of selection

(Wooldridge 2002b, 2007, Prokhorov and Schmidt 2009, Hitomi et al. 2008), is valid under nonsmoothness

of the objective functions that characterize the models of interest; and (iv) shows that even in that case the

widely used two-step estimator is relatively less efficient than a one-step joint estimator.

Section 2 extends results on redundancy and efficiency due to Prokhorov and Schmidt (2009) that can

now be applied to a wide range of contexts in which nonsmooth objective functions can be useful, including

LAD, quantile regression, censored LAD and quantile treatment effects. Joint estimation of nuisance param-

eters and parameters of interest is more efficient than a two-step procedure or knowing the true nuisance

parameters in the nonsmooth case. This springs from the information contained in the correlation between

both sets of moment conditions which is useful, even when γo is known. Using only the first set of moment

conditions and known values of γo in the estimation procedure does not use the additional information em-

bedded in the second set of moment conditions, being inefficient. Some possible consistent estimators for

the variance of both sets of parameters are presented.

Section 3 analyzes the missing data problem described in Wooldridge (2007). The selection model is

estimated by a conditional MLE procedure, but the assumptions about the selection model are weak enough

to cover most of the common parametric selection processes in the literature, like attrition, variable proba-

bility, ”missing at random”, etc. One important case not covered is ”selection on unobservables”. If we use

both sets of moment conditions, knowledge about the nuisance parameters is not useful for the efficiency of

the estimates of the parameters of interest. Additionally, the moment conditions that are associated with

the selection model are not redundant, except in special cases. Estimating the parameters of interest using

only the first set of moment conditions with known probabilities of selection as weights is inefficient because

it ignores information in the second set of moment conditions. This is the type of result referred to in the

selectivity literature, specially in the IPW approach to missing data.

In summary, this paper shows that IPW can be used to correct missing data problems when the model

of interest is based on nonsmooth objective functions. Furthermore, two-step estimation of βo is more

efficient than using known probabilities of selection. Nonetheless, the two-step estimator is dominated by

a one-step joint estimation procedure that uses both the weighted moment conditions and the selection

model’s conditions. Hence, this paper extends the analysis by Prokhorov and Schmidt (2009) to the relative

efficiency of an IPW approach to deal with missing data problems in which the moment conditions of interest
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are nonsmooth, encompassing, for example, LAD, quantile regression, Censored LAD and IVQR.

Finally, two illustrative examples of interesting models are provided that are encompassed by the general

framework developed in this work. The first is a quantile regression model with missing data and, the second

one is a simplified version of the Instrumental Variable Quantile Regression estimator (IVQR) presented by

Chernozhukov and Hansen (2006).

6 Appendix

Proof of Theorem 1. For VONE−STEP , VKNOW−γ and VKNOW−γ−JOINT this result is a direct appli-

cation of known results in the literature (see, e.g., p. 2186 in Newey and McFadden 1994 or more generally

p. 1594 in Chen, Linton and Van Keilegom 2003) and the simplifications that take effect by the use of the

appropriate weighting matrix. For VTWO−STEP I rely on the approximations used by Newey and McFadden

(1994) in theorem 7.2 and Pakes and Pollard (1989) theorem 3.3 and lemma 3.5. Following Pakes and Pollard

(1989), I claim that gn(θ) is very well approximated by the linear function

Ln(θ) =


Ln1(θ)

Ln2(θ)


 = gn(θo) +G(θ − θo)

=


gn1(βo, γo) +G11(β − βo) +G12(γ − γo)

gn2(γo) +G22(γ − γo)




within a Op(n
− 1

2 ) neighborhood of θo. More precisely, I need the approximation error to be of order op(n
− 1

2 )

at θ̂ and at θ∗ which minimizes ‖Ln(θ)‖ globally. In the case analyzed here,

∥∥∥gn(θ̂)− Ln(θ̂)
∥∥∥ =

∥∥∥gn(θ̂)− gn(θo)−G(θ̂ − θo)
∥∥∥

=
∥∥∥gn(θ̂)− gn(θo)−G(θ̂ − θo)− go(θ̂) + go(θ̂)

∥∥∥

≤
∥∥∥gn(θ̂)− go(θ̂)− gn(θo)

∥∥∥+
∥∥∥go(θ̂)−G(θ̂ − θo)

∥∥∥

≤ op(1)n−
1
2

[
1 +
√
n
∥∥∥(θ̂−θo)

∥∥∥
]

+ op(
∥∥∥(θ̂−θo)

∥∥∥)

= op(n
− 1

2 )

where in the last equality I used the fact that
∥∥∥(θ̂−θo)

∥∥∥ ≤ Op(n
− 1

2 ) (see Newey and McFadden 1994, page

2191). To correspond to a minimum of ‖Ln(θ)‖, the vector G(θ∗− θo) must be equal to the linear projection

of −gn(θo) onto the space G. Hence,

G(θ∗ − θo) = −G(G′G)−1G′gn(θo)

from this equation, we can obtain

√
n(θ∗ − θo) = −√n(G′G)−1G′gn(θo)
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from Pakes and Pollard (1989) lemma 3.5. the result above holds for the case in which we use the appropriate

positive semidefinite weighting matrix Ŵ that converges in probability to W , in which case

√
n(θ∗ − θo) = −√n(G′ŴG)−1G′Ŵgn(θo)

as shown by Pakes and Pollard (1989) (page 1042) under the conditions listed above θ∗ and θ̂ are close

enough in this shrinking neighborhood around θo such that we can write

√
n(θ̂ − θo) =

√
n(θ∗ − θo) + op(1)

Hence, for the first step estimator, the following approximation is valid

√
n(γ̂ − γo) = −√n

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 gn2(γo) + op(1) (25)

Then, for the second step, using the same results, we can approximate

√
n(β̂ − βo) = −√n

(
G′11C

−1
11 G11

)−1
G′11C

−1
11 gn1(βo, γ̂) + op(1)

= −√n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 [gn1(βo, γo) +G12(γ̂−γo)] + op(1)

= −√n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 gn1(βo, γo)+

+
√
n
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1× (26)

×G′22C
−1
22 gn2(γo) + op(1)

then, by combining 25 and 26 we can write

√
n(θ̂ − θo) = B

√
ngn(θo) + op(1)

where,

B =


B11 B12

0 B22




with

B11 = −
(
G′11C

−1
11 G11

)−1
G′11C

−1
11

B12 =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22

B22 = −
(
G′22C

−1
22 G22

)−1
G′22C

−1
22

hence,

VTWO−STEP = BΣB′
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Proof of Corollary 1. The proof follows directly from Prokhorov and Schmidt (2009) since theorem 1 has

shown that the variance structure of the four estimators considered is the same as in Prokhorov and Schmidt

(2009). The proof that the result hold directly for the case in which the objective functions considered are

nonsmooth is presented in the technical supplement to this paper, available under request.

Proof of Corollary 2. Note that the asymptotic variance of
√
n(β̂TWO−STEP − βo) can be rewritten as

(note that B12 =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 = B11G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 )

V (β̂TWO−STEP ) = B11C11B
′
11 +B12C21B

′
11 +B11C12B

′
12 +B12C22B

′
12

= B11E [g1(ω∗i , θ)g1(ω∗i , θ)
′]B′11 +B12E [g2(ω∗i , γ)g1(ω∗i , θ)

′]B′11+

+B11E [g1(ω∗i , θ)g2(ω∗i , γ)′]B′12 +B12E [g2(ω∗i , γ)g2(ω∗i , γ)′]B′12

= B11E



(
g1(ω∗i , θ)−G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)
×

×
(
g1(ω∗i , θ)−G12

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)′


B′11

if G12 = C12C
−1
22 G22

= B11E



(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)
×

×
(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 g2(ω∗i , γ)

)′


B′11

Since it is assumed that G22 is invertible,

= B11E



(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 G22G

−1
22 g2(ω∗i , γ)

)
×

×
(
g1(ω∗i , θ)− C12C

−1
22 G22

(
G′22C

−1
22 G22

)−1
G′22C

−1
22 G22G

−1
22 g2(ω∗i , γ)

)′


B′11

= B11E
[(
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

) (
g1(ω∗i , θ)− C12C

−1
22 g2(ω∗i , γ)

)′]
B′11

If we define ei = g1(ω∗i , θ)− C12C
−1
22 g2(ω∗i , γ), and Do = E [eie

′
i], we can write,

V (β̂TWO−STEP ) =
(
G′11C

−1
11 G11

)−1
G′11C

−1
11 DoC

−1′
11 G11

(
G′11C

−1
11 G11

)−1

In this case, we can write the variance of the two-step estimator for βo in a quadratic form in which the term

in the middle of the matrix is the residual of the linear projection of the first set of moment conditions on

the second set of moment conditions.

If, in addition to the conditions above, we assume G11 is invertible, the result follows.

V (β̂TWO−STEP ) = G−1
11 DoG

−1′
11
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Proof of Lemma 2. First, note that,

E [sg2(z, γo, s)
′ | z] = E

[
s
∇γf(vi | zi, γ)′

f(vi | zi, γ)
p z
]

=

∞∫

−∞

s
∇γf(v | z, γ)′

f(v | z, γ)
f(v | z, γ)dv

=

∞∫

−∞

h(v, z)∇γf(v | z, γ)′dv

= ∇γ



∞∫

−∞

h(v, z)f(v | z, γ)′dv




= ∇γE [s p z]

= ∇γp(z, γo)

this is nonzero in general. Hence,

C12 = E [g1(ω∗, βo, γo, s)g2(z, γo,s)
′]

= E

[
s

p(z, γo)
g(ω, βo)g2(z,γo,s)

′
]

= E

[
E

[
s

p(z, γo)
g(ω, βo)g2(z,γo,s)

′ p z
]]

= E

[
E

[
1

p(z, γo)
g(ω, βo)sg2(z,γo,s)

′ p z
]]

= E

[
1

p(z, γo)
E [g(ω, βo) p z]E [sg2(z, γo,s)

′ p z]
]

, by ignorability

= E

[
g(ω, βo)

p(z, γo)
E [sg2(z, γo, s) p z]′

]

= E

[
g(ω, βo)

p(z, γo)
∇γp(z, γo)

]

which is generally nonzero.

Analyzing G12,

G12 = ∇γE[g1(ω∗, βo, γo, s)]

= ∇γE
[

s

p(z, γo)
g(ω, βo)

]
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since, g1(ω∗, βo, γo, s) = s
p(z,γ)g(ω, β), is smooth in γ,

G12 = E

[
∇γ
(

s

p(z, γo)

)
g(ω, βo)

]

= E

[
− s

(p(z, γo))
2∇γp(z, γo)g(ω, βo)

]

= E

[
− s

p(z, γo)
g(ω, βo)

∇γp(z, γo)
p(z, γo)

]

= −E
[
E

[
s

p(z, γo)
g(ω, βo)

∇γp(z, γo)
p(z, γo)

]
p z
]

, by LIE

= −E
[
E(s p z)
p(z, γo)

E [g(ω, βo) p z]
∇γp(z, γo)
p(z, γo)

]

= −E
[
g(ω, βo)

∇γp(z, γo)
p(z, γo)

]
, since E [s p z] = p(z, γo)

= −C12

Then, to prove the lemma 1 I need that G22 = −C22, which follows from the Generalized Information

Equality (remembering g2(z,γo,s) is a smooth function).

G22 = ∇γE[g2(z, γo,s)]

= E[∇γg2(z, γo,s)]

= −E [g2(z,γo,s)g2(z,γo,s)
′] = −C22

hence, G12 = −C12 = −C12(−C−1
22 G22) = C12C

−1
22 G22.

Proof of Theorem 2. This follows directly from Lemma 1 and statements 9 and 10 in Corollary 1.

Claim 1 Consider the conditional quantile function

Qτ (Y | X) = X ′βτo

and the weighted linear quantile estimator obtained as

β̂τ = arg min
b∈Rp

∑
wiρτ (yi − x′ib)

for some known weight wi that could be a function of exogenous variables. Under conditions 4 and 5, we

have
√
n
(
β̂τ − βτ

)
∼ N

(
0, τ(1− τ)D−1

1 DoD
−1
1

)

with, D2 = limn→∞
∑n
i=1 wifi(x

′
iβτo)xix

′
i and Do = limn→∞

∑n
i=1 w

2
i x
′
ixi

Assumption 4 For Y1, Y2, . . . , Yn independent random variables with distribution functions F1, F2, . . . , Fn,

{Fi} are absolutely continuous with continuous densities fi (·) and weights, wi, uniformly bounded away from

0 and ∞ at the points fi (x′iβτo) for every i.
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Assumption 5 There exist positive definite matrices Do and D1 such that

i) limn→∞ 1
n

∑n
i=1 w

2
i xix

′
i = Do

ii) limn→∞ 1
n

∑n
i=1 wifi(x

′
iβτo)xix

′
i = D1

iii) max ‖xi‖√
n
→ 0

Proof of Claim 1. This proof follows the steps presented on Koenker (2005) p. 120.

Consider ui = yi − x′iβτo , then

β̂τ = arg min
b∈Rp

n∑

i=1

wi [(yi − x′ib) (τ − 1 [yi − x′ib ≤ 0])]

= arg min
b∈Rp

n∑

i=1

wiρτ (ui)

Now consider the following convex objective function, with unique minimizer at
√
n
(
β̂τ − βτo

)
,

Zn(δ) =
n∑

i=1

wi

[
ρτ

(
ui − x′i

δ√
n

)
− ρτ (ui)

]

using Knight’s identity ρτ (u−v)−ρτ (u) = −vΨτ (u)+
v∫
0

(1 [u ≤ S]− 1 [u ≤ 0]) dS, with Ψτ (u) = τ−1 [u ≤ 0]

Zn(δ) =
n∑

i=1

wi


−x

′
i

δ√
n

Ψτ (ui) +

x′i
δ√
n∫

0

(1 [ui ≤ S]− 1 [ui ≤ 0]) dS




= Z1n(δ) +
n∑

i=1

Z2ni(δ) = Z1n(δ) + Z2n(δ)

Note that, by the Lindeberg-Feller central limit theorem,

Z1n(δ) = −δ′ 1√
n

n∑

i=1

wix
′
iΨτ (ui)

= −δ′ 1√
n

n∑

i=1

wix
′
i (τ − 1 [ui ≤ 0])

∼ −δ′W

W ∼ N

(
0, τ(1− τ) lim

n→∞

n∑

i=1

w2
i xix

′
i

)

Also,

Z2n(δ) =
n∑

i=1

Z2ni(δ)

=

n∑

i=1

E [Z2ni(δ)] +

n∑

i=1

Z2ni(δ)− E [Z2ni(δ)]
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but,

n∑

i=1

E [Z2ni(δ)] =

n∑

i=1

wi

x′i
δ√
n∫

0

E [1 [ui ≤ S]− 1 [ui ≤ 0]] dS

=

n∑

i=1

wi

x′i
δ√
n∫

0

Fi(x
′
iβτo + S)− Fi(x′iβτo)dS

let S = t√
n

, then

n∑

i=1

E [Z2ni(δ)] =
1

n

n∑

i=1

wi

x′iδ∫

0

√
n

[
Fi

(
x′iβτo +

t√
n

)
− Fi(x′iβτo)

]
dt

=
1

n

n∑

i=1

wi

x′iδ∫

0

fi(x
′
iβτo)tdt+ o(1)

=
1

2n

n∑

i=1

wifi(x
′
iβτo)δ

′xix
′
iδ + o(1)

→ 1

2
δ′
[

lim
n→∞

1

n

n∑

i=1

wifi(x
′
iβτo)xix

′
i

]
δ =

1

2
δ′D1δ

Under A2(iii):

Zn(δ) ∼ Zo(δ) = −δ′W +
1

2
δ′D1δ

then

√
n
(
β̂τ − βτ

)
= δ̂n = arg minZn(δ) ∼ δ̂o = arg minZo(δ)

δ̂o = D−1
1 W

hence,
√
n
(
β̂τ − βτ

)
∼ N

(
0, τ(1− τ)D−1

1 DoD
−1
1

)

References

[1] Ahn, S. and P. Schmidt, 1995, A Separability Result for GMM Estimation, with Applications to GLS

Prediction and Conditional Moment Tests. Econometric Reviews 14: 1, 19-34.

[2] Andrews, D., 1994, Empirical Process Methods in Econometrics, in: R. F. Engle & D. McFadden,

(Eds.), Handbook of Econometrics, Vol. 4, pp. 2248-2294.

27



[3] Angrist, J.; V. Chernozhukov and I. Fernandez-Val, 2006, Quantile Regression Under Misspecification,

with an Application to the U.S. Wage Structure. Econometrica 74, 539-563.

[4] Buchinsky, M., 1998, Recent Advances in Quantile Regression Models: A Practical Guideline for Em-

pirical Research, The Journal of Human Resources 33, 88-126.

[5] Cattaneo, M., 2010, Efficient Semiparametric estimation of multi-valued treatment effects under ignor-

ability. Journal of Econometrics 155, 138-154.

[6] Chen, X.; H. Hong and A. Tarozzi, 2008, Semiparametric Efficiency in GMM Models with Auxiliary

Data. The Annals of Statistics 36, 808-843.

[7] Chen, X.; O. Linton and I. Van Keilegom, 2003, Estimation of Semiparametric Models When the

Criterion Function is Not Smooth. Econometrica 71, 1591-1608.

[8] Chernozhukov, V. and C. Hansen, 2005, An IV Model of Quantile Treatment Effects. Econometrica 73,

245-261.

[9] Chernozhukov, V. and C. Hansen, 2006, Instrumental Quantile Regression Inference for Structural and

Treatment Effect Models. Journal of Econometrics 132, 491-525.

[10] Chernozhukov, V. and C. Hansen, 2008, Instrumental Variable Quantile Regression: A Robust Inference

Approach. Journal of Econometrics 142, 379-398.

[11] Daniels, H. E., 1961, The Asymptotic Efficiency of a Maximum Likelihood Estimator, in: Proceedings

of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp 151-163.

[12] Hirano, K.; G. Imbens and G. Ridder, 2003, Efficient Estimation of Average Treatment Effects Using

the Estimated Propensity Score. Econometrica 71, 1161-1189.

[13] Hitomi, K.; Y. Nishiyama and R. Okui, 2008, A Puzzling Phenomenon in Semiparametric Estimation

Problems with Infinite-Dimensional Nuisance Parameters. Econometric Theory 24, 1717-1728.

[14] Huber, P. J., 1967, The Behavior of Maximum Likelihood Estimates Under Nonstandard Conditions, in:

L. M. LeCam & J. Neyman, (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, pp. 221-233.

[15] Koenker, R., 2005, Quantile Regression, Cambridge University Press.

[16] Lee, W., 2006, Robust Tests of Hypotheses in Models with M-Estimation. Working Paper.

[17] Newey, W. K. and D. McFadden, 1994, Large Sample Estimation and Hypothesis Testing, in: R. F.

Engle & D. McFadden, (Eds.), Handbook of Econometrics, Vol. 4, pp. 2111-2245.

[18] Newey, W. K., 1984, A Method of Moments Interpretation of Sequential Estimators. Economic Letters

14, 1349-1382.

28



[19] Newey, W. K., 1994, The Asymptotic Variance of Semiparametric Estimators. Econometrica 62, 201-206.

[20] Pakes, A. and D. Pollard, 1989, Simulation and the Asymptotics of Optimization Estimators. Econo-

metrica 57, 1027-1057.

[21] Pollard, D., 1985, New Ways to Prove Central Limit Theorems. Econometric Theory 1, 295-314.

[22] Prokhorov, A. and P. Schmidt, 2009, GMM Redundancy Results for General Missing Data Problems.

Journal of Econometrics 151, 47-55.

[23] Qian, H. and P. Schmidt, 1999, Improved Instrumental Variables and Generalized Method of Moments

Estimators. Journal of Econometrics 91, 145-169.

[24] White, H., 1984, Asymptotic Theory for Econometricians, Academic Press Inc.

[25] Wooldridge, J. M., 2002a, Econometric Analysis of Cross Section and Panel Data, MIT Press, Cam-

bridge, Mass.

[26] Wooldridge, J. M., 2002b, Inverse Probability Weighted M-Estimation for Sample Selection, Attrition,

and Stratification. Portuguese Economic Journal 1, 117-139.

[27] Wooldridge, J. M., 2007, Inverse Probability Weighted Estimation for General Missing Data Problems.

Journal of Econometrics 141, 1281-1301.

29


