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Introduction

The decision to smoke has long interested social scientists and health policy researchers

because of the seemingly irrational nature of such a choice. Why would an individual un-

dertake an activity with such clear negative health consequences? A thorough review of this

debate can be found in Sloan et al. (2003). Ultimately, those authors conclude that individu-

als make decisions within an environment that reflects individual preferences but one that is

also subject to information acquisition costs. Gary Becker describes economic decision mak-

ers: “They (economic agents) are not expected to be perfect optimizers, as evaluated by the

analyst, or dispassionate external observers; rather, people do the best they can, given their

information and their cognitive abilities to understand it (qtd. in Sloan et al. (2003) pg. 25).”

An important question addressed by the smoking literature has been: what determines and

shapes “their information?” Furthermore, how does information influence smoking behavior?

And, to what extent has information regarding the health effects of smoking been free from

selection bias? These questions form the basis for the current paper.

To address these questions, this paper estimates the structural parameters of an indi-

vidual’s optimization problem with the following trade-off: current enjoyment of cigarette

consumption versus the associated and uncertain future health, and thus, utility consequences.

Two dimensions of health are considered: health markers and chronic health. Health mark-

ers are those factors (e.g., blood pressure, cholesterol, etc.) viewed by the medical literature

to significantly predict the onset of chronic conditions (e.g., cardiovascular disease, cancer,

etc.). In this setting, health markers are framed as informative signals of the health effects of

cigarette smoking. Given a history of these health markers and smoking behaviors, an individ-

ual is able to more precisely evaluate the effect of smoking on her health markers levels which,

in turn, helps to determine her chronic health probability. Endowed with this information, an

individual makes the smoking choice that maximizes her present discounted expected utility.

The structural parameters of the model are estimated with rich longitudinal data from

the offspring of the original cohort of the Framingham Heart Study. These data record health

examinations over a 30 year period and, due to wide age variation, capture health and smok-

ing outcomes across the life cycle. The structural model is identified from variation in the

timing of health exams. That is, observationally equivalent individuals that receive health

exams at different time intervals, form different beliefs and may make different smoking deci-

sions; however, the timing of Framingham Heart Study exams was not related to health.

This paper furthers our understanding of smoking dynamics in three important ways.

First, the structural model extends the standard rational addiction model of Becker and Mur-

phy (1988) by incorporating both health and learning. While other papers that incorporate
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health and/or learning into the rational addiction framework are purely theoretical (e.g., Or-

phanides and Zervos (1995); Suranovic et al. (1999); Carbone et al. (2005)), I estimate the

preference and expectation parameters of a rational addiction model that capture forward-

looking behavior with respect to health.1 Smoking history is modeled as a capital stock and

is measured in a novel way so as to facilitate the estimation of depreciation and investment

coefficients while keeping the model computationally tractable. Consistent with the theory of

rational addiction, I find that smoking is reinforcing in the sense that the marginal utility of

smoking is increasing in the amount of past smoking. I also find that the costs of withdrawal

can prevent individuals from quitting smoking. The reinforcement and withdrawal effects are

found to drive smoking dynamics.

Second, a major contribution of this paper is to model how the receipt of information

about an individual’s health markers may alter an individual’s smoking behavior. When in-

formation about the ill-health effects of smoking is made personal, the literature has argued

that this personalized health information may provide an individual with a powerful incen-

tive or “wake-up call” to curtail smoking behavior (Sloan et al., 2003). 2 As an example, if a

smoker experiences a heart attack, this health shock may be framed as an informative signal of

the consequences of her smoking. This paper extends the literature on smoking responses to

personalized health information that have only considered chronic health shocks (e.g., heart

attacks, cancer diagnoses, etc.) (Smith et al., 2001; Khwaja et al., 2006; Arcidiacono et al.,

2007). The distinction between health marker information and chronic health shocks as in-

formation is important if the potential gains from information from a chronic health shock are

“too late”. Indeed, if policy makers are concerned with improving overall expected longevity,

the incidence of a heart attack, while effective in convincing an individual to quit smoking,

may not yield additional longevity. However, if changes in blood pressure, say, over time that

are due to smoking, convince an individual to quit prior to the incidence of a heart attack,

then there may exist a role for policy to emphasize the personalized “warning signs.” Thus,

motivated by the Becker quote above, the structural model in this paper explicitly accounts for

health marker transition learning, and estimates parameters that dictate a Bayesian learning

process.

To evaluate the roles of learning and information, I use the model and the estimated

1Individuals are modeled as forward-looking in the sense that they evaluate current smoking alternatives while
taking into consideration the future health and utility consequences associated with past and current smoking
behavior. See Viscusi (1990); Viscusi and Hakes (2008); Arcidiacono et al. (2007) for evidence that smokers are
forward-looking with respect to health.

2Specifically, Sloan et al. (2003) and Khwaja et al. (2006) argue that, while general sources of health in-
formation (e.g., commercials, warning labels, etc.) may influence the light to moderate smoker, these sources
of information will have less affect on the smoking behavior of heavy smokers. Indeed, for the heavy smoker,
personalized information is required to change behavior.
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structural parameters to simulate smoking behavior and health and mortality outcomes under

different counterfactual scenarios. The results suggest that there exists heterogeneity across

individuals in the pathways by which smoking affects health. I find that the effect of the accu-

mulated smoking stock on health markers varies widely across individuals relative to the mean

effect. While the average variance in beliefs regarding this effect decreases by 20% after the

first health exam, the estimated mean of the parameter distribution is small and thus, learning

about this parameter does not greatly impact smoking behavior. Counterfactuals in which in-

dividuals receive information more frequently do not appear to show individuals altering their

smoking behavior in any significant sense. However, when signals of poor health markers are

augmented between two and four times their normal levels, individuals are simulated to quit

smoking at the ages in which the major chronic smoking-related shocks start to occur. While

smokers are found to quit or reduce their smoking after a chronic health shock, results from

this paper suggest that health markers have limited informational value.

Tangentially, a third contribution of this paper brings into question whether current

knowledge of the health effects of smoking are free from selection bias. Using data from across

the life cycle, this paper measures the role of health and mortality transition determinants by

estimating these production technologies within the structural model of lifetime smoking de-

cisions. This method allows both for smoking to affect health and for rational individuals to

select the optimal smoking alternative while taking into account their health. Modeling both

smoking behavior and health outcomes also allows for the capture of unobserved heterogene-

ity that may be present in their joint determination. For example, if smokers are also more

likely to engage in other health-hazardous behaviors (e.g. drinking, drug use, etc.), then treat-

ing smoking as random within the population will lead to overstated estimates of the direct

effect of smoking on the health outcome of interest.

My results are the first of which I am aware to explicitly control for the potential positive

selection between smoking and health outcomes while also estimating the health transition

equations within the structural model of lifetime smoking. To capture any unobserved hetero-

geneity, I allow the unobserved errors that affect smoking, health, and mortality to be serially

correlated through a common permanent unobserved component. I model this error structure

with the discrete factor method (Heckman and Singer, 1984; Mroz, 1999) which amounts

to a random effects specification of unobserved heterogeneity that is free from distributional

assumptions.3

3The error structure is similar to recent structural models that have accounted for unobserved heterogeneity
(Arcidiacono et al., 2007; Blau and Gilleskie, 2008).
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To assess both the potential for selection on smoking and the effect of smoking on health

outcomes, I simulate the structural model under different lifetime smoking patterns and het-

erogeneity characteristics. For daily light and heavy smoking from age 18, individuals can

expect roughly 4.5 and 8 fewer years of longevity, respectively. These results are less se-

vere in their overall assessment of the health effects of smoking on mortality than are the

unconditional results presented in the widely cited work of Doll et al. (1994, 2004). My re-

sults indicate that there exists a strong positive correlation between smoking tendencies and

underlying factors that influence mortality outcomes that, if ignored, leads to an overstate-

ment of the longevity effects of cigarette smoking. Interestingly, while I find that unobserved

heterogeneity plays a major role in the dynamic relationship between smoking behavior and

mortality, the unobserved heterogeneity plays almost no role in predicting health marker and

chronic health transitions.

Still, consistent with some literature on smoking and health, my results suggest that there

exist longevity gains from quitting at any age, and that quitting prior to age 30 implies that

an individual has roughly the same expected longevity as a lifelong nonsmoker. Furthermore,

this paper finds that quitting heavy smoking at ages 30, 40, 50, and 60 years of age increases

life-expectancy by approximately 8, 7.75, 7, and 5.5 years, respectively.4

Finally, another contribution of this paper is the way in which smoking dynamics are

modeled empirically. The key term in the standard rational addiction model of Becker and

Murphy (1988) is an addictive capital stock that is subject to investment and depreciation.

Those authors argue that addiction is captured by a positive interaction between the smoking

stock and the marginal utility of addictive consumption. While theoretically it is quite intu-

itive to think an individual that has smoked in the past may have a higher marginal utility of

smoking than someone who has not smoked, it is not clear how to best capture this capital

stock empirically. For example, defining the stock to be the total number of years smoked

ignores the importance of cessation (i.e., someone who smoked for 10 years and quit twenty

years ago may have a different marginal utility for smoking than someone who smoked for

10 years and quit last year). This paper extends the empirical smoking literature with a novel

construction of the “smoking stock”. Using factor analysis in a method similar to Sickles and

Williams (2008), I create a continuous smoking stock index from several variables that reflect

4There is a large literature on the effects of smoking cessation on health outcomes. See United States De-
partment of Health and Human Services (1990); Doll et al. (1994); Taylor et al. (2002); Doll et al. (2004);
Brønnum-Hansen et al. (2007). This issue of “smoking depreciation” is often framed as the amount of time re-
quired after cessation until the probability of a health outcome converges to that of a nonsmoker. Because of
the generality of my treatment of health (e.g., chronic health or not), and because smoking cessation improves
various health outcome probabilities differently, the discussion in this paper focuses on the benefits from quitting
smoking on expected longevity.
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past smoking behavior.5 This easily interpretable state variable captures the unique smoking

history that each individual brings into each decision making period. Furthermore, measuring

the smoking stock using this method also allows for the estimation of depreciation and invest-

ment parameters.6

This paper proceeds in the following sections. Section I provides background on the

economics and medical literatures with respect to smoking. That section also describes the

economics of information and expectations in the context of cigarette smoking. Section II

presents the formal structural model. Section III discusses the Framingham Heart Study and

presents basic summary statistics of the data used in estimation. How the structural model in

Section II and the data in Section III are reconciled is discussed in Section IV. I also formally

describe the econometric methods used in estimating the structural model as well as identi-

fication issues in Section IV. Section V presents the main results of the paper and examines

potential policy measures. Section VI offers a brief discussion and concludes. Additionally,

Appendix A provides details on the solution method employed in this paper, and Appendix B

gives the formal derivation of posterior beliefs.

I Background

Cigarette smoking is the single greatest preventable risk factor for mortality and mor-

bidity. According to a 2004 Surgeon General report, cigarette smoking is causally linked to

cancers of the bladder, cervix, esophagus, kidney, larynx, lung, mouth, pancreas, and stomach.

Furthermore, there exists a causal relationship between smoking and coronary heart disease,

cerebrovascular disease, atherosclerosis, various respiratory diseases, and several reproduc-

tive maladies. 440,000 deaths are attributed to smoking in the United States each year. Illness

from smoking is estimated to add $157 billion per year to national health expenditures. In

short, a 2004 United States Surgeon General report on smoking concludes by stating: “Smok-

ing harms nearly every organ of the body, causing many diseases and reducing the health of

smokers in general.”7

Behind much of the Surgeon General Report’s results is the ongoing work of (Doll et al.,

1994, 2004). Those authors use survey data of British physicians over several decades to assess
5Sickles and Williams (2008) use principal component analysis to construct a “stock” of social capital from

several correlated variables such as labor force participation, yearly hours worked, marriage, and “hours in
income generating crime per year.”

6Adda and Lechene (2004) note that the smoking stock may be different between reinforcing further smoking
and affecting health. Indeed, those authors model two smoking stocks: a utility smoking stock and a health
smoking stock. Each are subject to different investment and depreciation parameters; however, those authors
fix rather than estimate these parameters. In my case, I abstract from this possibility and estimate the transition
parameters of a single stock variable that captures past smoking.

7Centers for Disease Control and Prevention, 2004. http://www.cdc.gov/tobacco/basic_information/index.htm
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the impact of cigarette smoking on mortality. Their findings suggest that smoking cessation at

ages 30, 40, 50, and 60 lead to improved life expectancies of 10, 9, 6, and 3 years respectively.

Furthermore, life-long smokers face a roughly 25 percentage point increase in the probability

of death during middle aged (35-69). However, Doll et al. do not control for the endogeneity

of smoking with respect to health outcomes nor do they consider the possibility that doctors in

different health states may select into smoking. If, independently of smoking, smokers are of a

worse overall health status than non-smokers, standard statistical methods may overstate the

effect of smoking on mortality. Indeed, only recently have papers in health economics begun

to jointly model smoking and health outcomes. For example, Adda and Lechene (2001) show

that potential life-span and smoking behavior are correlated along unobserved (to the econo-

metrician) dimensions. In the current paper, estimation of the primitive parameters of one’s

decision making optimization problem (e.g., preferences, constraints, and expectation param-

eters) allows me to assess the impact of smoking on morbidity and mortality outcomes while

considering the potential for endogeneity of and dynamic selection into smoking behaviors.

In addition, the introduction of serially correlated (permanent) unobserved heterogeneity that

affects decision making over the life cycle (including observed initial conditions) allows for the

recovery of parameters that measure the impact of smoking and health markers on morbidity

and mortality that are free of selection bias. Unbiased estimation of these primitive parame-

ters allows me to simulate the model and impose different patterns of smoking and quitting to

examine the resulting changes in predicted health outcomes.

In addition to assessing the potential for dynamic selection with respect to smoking and

health outcomes, the main goal of this paper is to assess the importance of health learning

within the rational addiction framework of Becker and Murphy (1988). One branch of the

rational addiction literature has studied the roles of information, risk perceptions, subjective

expectations, and learning in the decision to smoke. Viscusi (1990) models an individual’s

beliefs regarding her health risk from cigarette smoking as a Bayesian function of three fac-

tors: a prior risk assessment, some measure of risk from experience (perhaps smoking history,

age, etc.), and some new information regarding risk. An important question addressed by the

literature has been: what exactly is this new risk information?

One type of new information can be categorized as any information that is directed to-

ward a general audience. A widely publicized example was the landmark 1964 United States

Surgeon General report that linked smoking to lung cancer and certain birth defects. Luther

L. Terry, then Surgeon General, stated that the report “hit the country like a bombshell. It was

front page news and a lead story on every radio and television station in the United States.”8

8http://profiles.nlm.nih.gov/NN/Views/Exhibit/narrative/smoking.html
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Did this information deter individuals from taking up smoking? Did smokers at the time re-

spond to the report by quitting? On this question, the literature has been mixed. While much

of the literature suggests that informational anti-smoking campaigns decrease cigarette de-

mand for light to moderate smokers, Sloan et al. (2003) argue that heavy smokers “do not

appear to update these perceptions (on the probability of illness/death due to smoking) in

response to general information; they need the message to be personalized.”9

Personalized health information may be an important motivator to quit if heavy smokers

possess an “it won’t happen to me” attitude. Khwaja et al. (2006), studying individuals from

the Health and Retirement Survey (HRS), show that smokers only “learn” about the risks as-

sociated with smoking, as measured by a change in smoking behavior, from a shock to their

own health. Those authors argue that if any health shock other than one’s own would encour-

age smoking cessation, it should be that of a spouse. The authors however find no significant

effect of spousal health shocks on smoking behavior. “The clear differences in the effects of

smoking-related health shocks for current smokers suggest that personalized messages, rele-

vant to their circumstances, are necessary to get their attention and induce changes in their

beliefs (qtd. in Sloan et al. (2003) pg. 124).”

Nearly all previous work that has examined learning or expectation formation with re-

spect to personalized health messages has studied behavioral changes after a major health

shock to self or spouse (Smith et al., 2001; Khwaja et al., 2006; Arcidiacono et al., 2007).

Additionally, most papers focus on individuals above the age of 50, at which age we begin

to observe the major health implications of smoking. However, waiting for a major health

shock to incite individuals to quit smoking may be too late in terms of life expectancy gains.

Therefore, the current paper examines the extent to which individuals learn about smoking

and health from personalized health marker information.

Using Framingham Heart Study data, Garrison et al. (1978) shows that cigarette smok-

ing has a negative impact on high-density lipoprotein (HDL) cholesterol, or “good” cholesterol.

Furthermore, due to the nicotine content in cigarettes, other studies have shown that smoking

increases both heart rate and blood pressure (Bennett and Richardson, 1984; Omvik, 1996).

These health markers, among others, have been directly tied to the risk of cardiovascular dis-

ease. To my knowledge, no study has examined the impact of personalized health marker

information on the decision to smoke.

Methodologically, this paper builds on other structural models that estimate Bayesian

learning processes in pharmaceutical demand (Crawford and Shum, 2005; Chan and Hamil-

ton, 2006), fertility and infant mortality (Mira, 2007), marketing (Ackerberg, 2003), and

health plan report cards (Chernew et al., 2008). While currently beyond the scope of this

9Italics theirs.
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paper, interesting future work might also consider other preference specifications such as non-

expected utility (e.g., Kreps and Porteus (1978, 1979); Epstein and Zin (1991)), hyperbolic

preferences (e.g., Gruber and Koszegi (2001)), and cue-trigger mistakes (e.g., Bernheim and

Rangel (2004)) in the context of smoking and addiction.

II Theoretical Model

I specify a dynamic stochastic model of smoking behavior that incorporates learning.

This section outlines the basic theoretical model. Given the limitations of the data, changes

to the model in the empirical implementation are discussed in section IV. Furthermore, the

appendices provide derivations and details of my solution method.

Consider a mixed discrete/continuous-state, discrete-time model of smoking behavior.

The model has a finite horizon in the sense that, while an individual may die prior to period

T , the probability of death equals one in period T . A period is indexed by subscript t and is

assumed to be one year in length. Each period, a forward-looking individual makes a smoking

decision to maximize her lifetime discounted expected utility. Let the decision for individual i

be given by di t = d, where smoking alternative d is:

d =





0 Do not smoke
1 Smoke ≤ 1 Pack/day
2 Smoke > 1 Pack/day





The set of factors that influence individual i′s smoking decision in period t are given by the

state space Si t . Define Si t as follows:

Si t =
�
Ai t , Ri t ,τi t ,ψi t , Hi t , X i t

	

where Ai t is individual i′s smoking stock entering period t; Ri t is an index of her health mark-

ers; τi t and ψi t are her mean and variance respectively of her posterior belief distribution;

Hi t is her chronic health status; and X i t is her set of demographic characteristics. Additionally

influencing behavior, but not listed here, are a preference error εi t and a permanent hetero-

geneity term µ that are both assumed to be known to the individual but unobserved to the

econometrician. Assumptions about these error terms that aid estimation are discussed in sec-

tion IV.

At the beginning of representative period t, an individual undergoes her period t health

exam and realizes her period t chronic health state Hi t , health marker index Ri t , and smoking

stock Ai t . Using the information from the period t health exam, an individual then updates her
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beliefs regarding the evolution of future state variables. The smoking decision is then made

and utility (to be defined below), as a function of the decision and period t state variables, is

realized.

In the subsections below, I expand upon each of the observed state variables and prefer-

ences.

II.1 Smoking Stock

Following the rational addiction literature, define Ai t as the accumulated smoking stock.10

Formally, define the stock as:

Ai t =

¨
exp
�
δ1ln(Ai t−1) +δ21[di t−1 = 1] +δ31[di t−1 = 2] +ρAµ+ηi t

	
if
∑t−1

n=1 din > 0
0 otherwise

«

(1)

Equation 1 says that individual i’s time t smoking stock is normalized to 0 if she has not

smoked in any previous period. Conditional on any past smoking, the stock is specified as a

function of the previous period stock and the previous period decision. δ1 can be interpreted

as one minus the depreciation rate of the stock in percentage terms. The nonlinear investment

of light and heavy smoking into the smoking stock are captured by δ2 and δ3, respectively.

Unobserved permanent heterogeneity is captured by the µ term and its factor loading ρA.11

Also influencing the stock is an i.i.d. white noise term, ηi t , which is distributed N (0,ση).12

Consistent with the interpretation of the stock as a summary of an individual’s smoking history,

the stock is assumed to be known by the individual in each period.

II.2 Health Marker Index

Define Ri t as a continuous scalar summary of a variety of health markers (e.g., blood

pressure, cholesterol, etc.) that is realized by the individual in each period. Similar to the

smoking stock (Ai t), Ri t is a scalar representation of numerous health factors. I assume that

Ri t evolves as follows:

Ri t = ζRi t−1+ X i tφ +κi t +ρ
Rµ. (2)

10The concept of a smoking “stock” is not immediately intuitive. Broadly speaking, the rational addiction
literature treats the stock as a measure of past smoking. Medically however, we might consider the stock as some
accumulation of tar in the lungs that influences health. Alternatively, we might think of the stock as the extent of
dependence on nicotine. For the purposes of this paper, the stock may be interpreted as a continuous summary
of an individual’s smoking history. Here, the extent to which Ai t influences health is an empirical question. See
the empirical section for further discussion.

11See section IV for a discussion of estimation and interpretation issues regarding the permanent unobserved
heterogeneity.

12Given the exponential stock evolution equation, η is a log normal shock.
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Here, X i t is a vector of sociodemographic characteristics of individual i. I assume that the tech-

nology associated with these characteristics (i.e., φ) is known by the individual. ζ captures

the dynamic aspect of the health markers and is also assumed to be known to the individual.

Time invariant and unobserved (to the econometrician) heterogeneity is captured by the µ

term and its factor loading ρR. Let κi t represent the input from the smoking stock plus an

idiosyncratic, i.i.d. error term that is defined as:

κi t = θiAi t + νi t . (3)

Because the individual observes or knows Ri t , ζ, X i tφ, and ρRµ, κi t is also observed by the

individual. The medical literature suggests that there exists heterogeneity across individuals

in the health effects of smoking. I theorize that each individual is endowed with a time invari-

ant, unknown (to both the individual and econometrician) match value θi that captures the

idiosyncratic effect of the smoking stock, Ai t on the health marker index, Ri t . I assume that θi

is drawn from a known population distribution given by:

θi ∼N (θ ,σ2
θ ).

κi t therefore serves as an informative signal. Over time, by having health exams and thus

observing a sequence of signals, θi is learned in a Bayesian fashion. Learning is, however,

confounded by the i.i.d. noise term, νi t . Indeed, without νi t , an individual would perfectly

learn their match value θi at the first health exam (i.e., the first realization of κi t). While νi t

is unknown, its distribution is known and given by:

νi t ∼N (0,σ2
ν).

Because θi is time invariant, and because the distributions of θi and νi t , as well as the stock

Ai t , are known, over time, an individual can learn their idiosyncratic value of θi.
13

II.3 Learning

Let an individual’s period t posterior beliefs, those with which she forecasts future health

markers, be given by τi t , her posterior mean, and ψi t , her posterior variance. I assume ratio-

nal expectations such that an individual’s initial belief, prior to any health exams, regarding

her true θi (the marginal effect of one’s smoking history, Ai t , on health markers, Ri t) is the

population distribution.14 Initial beliefs (t = 0) are:

τi0 = E0(θi) = θ
13The assumption that an individual knows the technology of the health production function is ubiquitous in

health economics. That is, typically θi = θ ∀ i and σθ = 0. θ is then estimated and assumed to be the marginal
product that all individuals use to solve optimization problems.

14The rational expectations assumption is what is typically made in most models of health transitions.
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ψi0 = V0(θi) = σ
2
θ .

Expectations about future health marker transitions evolve in the current model with the re-

ceipt of personalized health information. In deriving posterior beliefs, consider an individual

in period t with smoking stock Ai t . This individual has two fundamental sources of infor-

mation: her prior beliefs, (τi t−1,ψi t−1), and the observed results from her period t health

exam, κi t . Appealing to the assumption of conjugate prior and signal distributions, the period

t beliefs have closed form solutions that are given via Bayes’ Rule. The posterior mean and

variance are :15

τi t = E(θi|κi t , Ai t ,τi t−1,ψi t−1) =
A2

i tψi t

σ2
ν

θ̂i t +
ψi t

ψi t−1
τi t−1 (4)

ψi t = Var(θi|Ai t ,ψi t−1,σν) =
ψi t−1σ

2
ν

A2
i tψi t−1+σ2

ν

. (5)

Here, θ̂i t is the least squares estimate of κi t on Ai t from the within individual variation of the

t th health exam. Note that these beliefs have the following appealing properties. First, the

posterior mean is a weighted average of θ̂i t and the original prior mean τi t−1. Second, the

weight placed on the period t signal (i.e., θ̂i t) is increasing in the smoking stock. Finally, the

posterior moments of an individual for whom the stock equals zero (i.e., Ai t = 0) collapse to

the prior moments.

II.4 Chronic Health

Let Hi t represent an individual’s overall health state. An individual’s overall health state

is determined by the presence of any chronic conditions. Let Hi t = h, where outcome h is as

follows:

h=
�

1 if Chronic Condition
0 if No Chronic Condition

�

What differentiates Hi t and Ri t is “reversibility”. While Ri t changes each period, I assume

that upon diagnosis of a chronic condition, an individual has the condition forever.16 Let the

probabilities of transiting to different chronic health states in period t + 1 be:

πh=0
i t+1 =

�
[1− P(Hi t+1 = 1|Si t , di t ,µ)] if Hi t = 0
0 if Hi t = 1

�

πh=1
i t+1 =

�
P(Hi t+1 = 1|Si t , di t ,µ) if Hi t = 0
1 if Hi t = 1

�
.

15Derivations of these equations can be found in Appendix B.
16This assumption captures the fact that upon having an heart attack, for example, an individual is in a funda-

mentally different health state even if they don’t have repeated heart attacks (Khwaja et al., 2006).
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Define the relevant probability, P(Hi t+1 = 1|Si t , di t ,µ), with the following binary logit equa-

tion:
ex p(λ0+λ1Ri t+λ2R2

i t+λ31[1980s]∗Ri t+λ41[1990s]∗Ri t+[λ5+λ6Ri t]∗di t+λ7X i t+ρHµ)

1+ex p(λ0+λ1Ri t+λ2R2
i t+λ31[1980s]∗Ri t+λ41[1990s]∗Ri t+[λ5+λ6Ri t]∗di t+λ7X i t+ρHµ)

(6)

Here, Ri t is the health marker index defined above, X i t is a vector of exogenous individual

characteristics, di t is the smoking choice and µ is an individual, time invariant unobserved

heterogeneity term. The factor loading superscript H simply differentiates it from other factor

loadings in the model. λ6 and λ7 capture changes over time in how health markers affect the

probability of chronic disease incidence (perhaps due to advances in medical technology, phar-

maceuticals, etc.). In forecasting future chronic health transitions, I follow the literature and

assume that an individual has rational expectations and that she understands the technology

associated with the chronic health transition probability.

A natural question becomes, why do individuals in the model learn about how smok-

ing affects health markers but not chronic conditions? By modeling learning about the effect

of Ai t on Ri t , however, individuals are indirectly updating their expectations about future

chronic health transitions because the health marker index enters the chronic health transi-

tion probability. Furthermore, the purpose of this paper is to explore the importance of health

information prior to major health shocks. Imposing that individuals understand the technol-

ogy (i.e., the λs) associated with covariates in the chronic health transition equation is the

standard approach. While future work may incorporate learning about health transition prob-

abilities, such learning is currently beyond the scope of this paper.

II.5 Mortality

While an individual may die prior to period T , death is assumed to occur with probability

one in period T . Define an indicator for death at the end of period t, Mi t+1=1, and let its

corresponding probability, ςi t+1 = P(Mi t+1 = 1|Si t , di t ,µ), be given by:

ex p(ω0+ω1Ri t+ω2R2
i t+ω3Hi t+1+[ω4+ω5Ri t+ω6Hi t+1]∗di t+ω71[1980s]∗Hi t+1+ω81[1990s]∗Hi t+1+ω9X i t+ρMµ)

1+ex p(ω0+ω1Ri t+ω2R2
i t+ω3Hi t+1+[ω4+ω5Ri t+ω6Hi t+1]∗di t+ω71[1980s]∗Hi t+1+ω81[1990s]∗Hi t+1+ω9X i t+ρMµ)

(7)

Here, Hi t+1, is individual i′s chronic health state at the end of period t.17 Again, the superscript

on the factor loading simply differentiates it from other factor loadings. The technology for

the death transition equation is assumed to be known by the individual. ω8 and ω9 capture

the fact that, conditional on having some chronic illness, the probability of death from that

illness may have changed over time due to medical advances. Furthering the discussion above,

17The timing convention here is due to data aggregation. Clearly, any chronic health event occurring in period
t must occur at or before the time of death, if death also occurs in t. Therefore, to accommodate the frequent
observation in the data of an individual dying from a chronic health event, the appropriate chronic health data
point in this equation is Hi t+1.
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because the health marker index enters the death transition equation directly (and indirectly

through the chronic health term Hi t), individuals are indirectly updating their expectations

about death transitions conditional on their smoking choice through the learning process.

II.6 Preferences

Following the standard expected utility framework, the deterministic portion of per pe-

riod utility associated with health state h, (h= 0, 1), and smoking alternative di t = d is:

U
h

it(Ai t , di t = d, Ri t , X i t ,µ) = α0h+ (α1h+α2hAi t +α3hRi t +α4hAgei t) ∗ [di t = 1]

+(α5h+α6hAi t +α7hRi t +α8hAgei t) ∗ [di t = 2]

+α9h ∗ [di t−1 6= 0] ∗ [di t = 0]+α10hAi t +α11hA2
i t +ρ

Uhdµ
(8)

The specification accommodates any nonlinearity in the effects of light and heavy smoking on

utility. While α1· (α5·) is the direct marginal utility of light (heavy) smoking, α2· (α6·) captures

the extent to which past consumption reinforces current consumption. α2· (α6·) captures a part

of the intertemporal trade-off in utilities. The extent to which the health marker index affects

the marginal utility of smoking is captured by α3· (α7·). Note that higher values of Ri t and Ai t

imply worse health and a higher smoking stock respectively. The sign and magnitudes of α2·
α3·, α6·, and α7· are empirical questions. α4· (α8·) captures changes in the marginal utility of

smoking across the lifespan. Specific withdrawal costs from quitting, which also capture part

of the intertemporal utility trade-off, are captured by α9·. Finally, α10· and α11· capture toler-

ance in smoking. That is, the extent to which a given level of stock affects utility is captured

here regardless of smoking behavior.18

Relative preferences over smoking alternatives hinge on two main factors. First, prefer-

ences vary by the chronic health state (Hi t = h). The extent to which the marginal utility of

smoking varies across chronic health states remains an open question. Generally, the marginal

utility of consumption of any normal good is thought to be lower in worse health states (Vis-

cusi and Evans, 1990; Gilleskie, 1998). If however smoking provides relaxation and comfort

when stricken with a chronic illness, the overall marginal utility of smoking may be larger in

worse health states. Estimation of the structural parameters will therefore empirically test for

the sign of the marginal utility of smoking across health states. Second, as seen in equations

18I have considered alternative specifications in which decade dummies shift the marginal utility of each smok-
ing alternative to capture the changes in national trends and attitudes towards cigarette smoking. However,
such a specification assumes that individuals have perfect foresight on future attitudes towards smoking. Also
considered were nonlinear age terms to capture youth, middle-age, and elderly marginal utility shifts; however,
these thresholds would be arbitrarily chosen and the computational problem with adding additional parameters
is large.
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1, 2, and 3, current period smoking affects the size of the next period smoking stock, which

in turn affects the next period health marker index and next period utility. Given the dynamic

nature of the model, individuals evaluate smoking alternatives while considering the future

marginal utility of smoking as well as the future consequences of a higher Ai t .

Following Rust (1987), let the total current period utility be the sum of the determin-

istic utility from equation 8 and an additive i.i.d. preference shock that is alternative and

health-state specific:

Uh
it(Ai t , di t = d, Ri t , X i t ,µ,εi t) = U

h

it(Ai t , di t = d, Ri t , X i t ,µ) + ε
dh
it .

In the empirical implementation below, εdh
it is simply an additive econometric error; however,

in the theoretical model, εdh
it is given a structural interpretation as an unobserved state variable

(Aguirregabiria and Mira, 2010). The alternative specific lifetime value function in health state

h, conditional on unobserved heterogeneity µ, is:

V h
d (Si t ,ε

dh
it |µ) = U

h

it(Ai t , di t = d, Ri t , X i t ,µ)+ε
dh
it +β

�
(1−ςi t+1)

1∑
a=0

πa
it+1Ei t[V

a(Si t+1|µ)|di t = d]
�

.

Here, V a(St+1|µ) is the maximal expected lifetime utility of being in health state a in period

t + 1. The value function is conditional on the unobserved heterogeneity component µ. The

expectation operator is taken over the time t posterior distribution of θ , as well as other shocks

that determine future state variables and preference shocks. Given the unitary dimension of

the posterior distribution, as well as the i.i.d. nature of other shocks to the model, I use a

Monte Carlo method to evaluate the expectation within solution to the model .19 Let V
h

d(·) =
V h

d (·) - εdh
it . If we assume that εd

t has an Extreme Value Type I distribution, then the maximal

(EMAX function) expected lifetime utility has the following closed form solution:

V h(Si t+1|µ) = EC + ln
�∑D

d=1 ex p
�
V

h

d(Si t+1|µ)
�� ∀t, ∀h. (9)

Here, EC is Euler’s constant. Furthermore, because the error term εd
t is additively separable,

the conditional choice probabilities take the following dynamic multinomial logit form:

p(di t = d|Si t ,µ) =
ex p
�
V

h

d(Si t |µ)
�

∑2
d=0 ex p

�
V

h

d(Si t |µ)
� ∀t, ∀h (10)

To preview the empirical implementation, the conditional smoking choice probability in equa-

tion 11 enters the likelihood function. The parameters that dictate the choice probability are

structural in the sense that they are follow from the above maximization problem. Also to en-

ter the likelihood function are the health and death transition probabilities, as well as health

marker index and smoking stock transition equations.
19See Appendix A for additional details.
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III Data: The Framingham Heart Study

The Framingham Heart Study is one of the longest running panel studies in the world.

With the stated goal to “identify the common factors that contribute to cardiovascular disease”,

the study contains repeated observations of individuals over a 50 year period.20 Beginning in

1948, the Framingham Heart Study began collecting biennial health data from 5107 individ-

uals living in Framingham, Massachusetts. These individuals formed what became known as

the Original Cohort. In 1971, the Framingham Heart Study began following the offspring of

the Original Cohort to form the Offspring Cohort. Each cohort represents a different panel

study that has continued into the 21st century. The main drawback of these data is that all

participants in the study are from Framingham. Therefore, there is no geographic, and limited

demographic, variation. Another drawback of these data is the lack of income measures. How-

ever, the data contain a wealth of health and smoking information that are ideal for analyzing

the trade-off between smoking and the potential for future health shocks.

The structural model above is estimated with data from the Framingham Offspring Co-

hort.21 The decision to focus on data from the Offspring Cohort stems from the consistency

with which the health exams were administered. Smoking and health questions changed over

time in the Original Cohort; thus, constructing uniform measures of smoking history, per-

period behavior, and health variables (especially health markers) proved to be difficult. In

constructing the sample used in estimation, I drop all individuals with a missing exam and

all those lost to attrition.22 Table 1 explains my process of sample construction.23 The final

sample consists of 19,461 person/year observations.

III.1 Sample Statistics

The sample statistics given in this section are by Framingham Heart Study exam. Off-

spring Cohort health exams have been administered at roughly four year intervals from 1971

20The Framingham Heart Study: http://www.framinghamheartstudy.org/index.html
21In another study, I am examining the intergenerational transfer of smoking preferences between Original and

Offspring Cohort participants.
22671 individuals are lost to attrition (i.e., some reason other than death) at some point during the seven

exams. This constitutes approximately 18% of my sample. The decision to drop these individuals is based on
the computational tractability of modeling attrition. Simple t-tests for difference of means suggest that those
that attrit are slightly more likely to be women, have a three point lower level of systolic blood pressure on
average, and have a statistically insignificant difference in coronary heart disease incidence than their nonattriting
counterparts. Those that attrit are on average slightly more likely to smoke.

23The full sample contains 5124 individuals. For this work, I only have access to data for those individuals
from whom consent for distribution was granted.
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to the present. While variation in the timing of the health exams may seem detrimental to im-

plementing the structural model above, as I discuss in Section IV, in estimation I exploit this

variation to help identify the model. Indeed, Section IV provides the majority of the sample

statistics for data used in estimation. In the empirical implementation of the model, I expand

these data to reflect the yearly decision making model presented above. I therefore postpone

the presentation of smoking and health transition statistics by age until the empirical imple-

mentation description in section IV.

I have data for each individual in the Framingham Heart Study Offspring Cohort for up

to seven health exams. Individuals range in age from 13 to 62 at the first exam which was

conducted between 1971 and 1975. For each participant, subsequent exams occurred at vary-

ing time intervals. Table 2 provides information on the average timing of each exam across

individuals, in addition to demographic information. Because attrition has been eliminated,

the number of individuals at each exam reflects only those that have survived. Over the health

exams, the sample becomes slightly more weighted toward female and non-married individu-

als. For confidentiality reasons, all study participants are white. Table 2 also shows the great

variability in ages across the sample. At the first exam, there are individuals who are as old as

the average age at the final exam. Indeed, over the entire sample, ages range from 13 to 88.

Table 3 gives sample percentages of the maximum number of years of education by category.

The sample reflects a rather well educated cohort for the time period. Nearly 89% of the sam-

ple has a high school degree or better.

Table 4 breaks down the sample by smoking prevalence over exams. Over the seven

exams, the sample smoking prevalence drops from roughly 41% to 11%. Interestingly, at the

first exam, smoking prevelence in the sample is roughly consistent with that of the United

States average prevelence (37% of Americans smoked in 1973). However, by the final exam,

the sample percentage of smokers has decreased to roughly 11% whereas the national average

fell to only 23.3%. The sample is also clearly older than the general population by the seventh

exam.24

Table 5 shows the percentage of the sample living with a chronic condition at each health

exams. I define a chronic condition to include a wide variety of cardiovascular diseases (e.g.,

coronary heart disease, myocardial infraction, cerebrovascular accidents, congestive heart fail-

ures, etc.) and cancers (lung, larynx, tongue,esophagus, etc.).25 The decision to aggregate the

24Centers for Disease Control and Prevention: http://www.cdc.gov/tobacco/basic_information/index.htm
25Due to data limitations, the dichotomous variable for chronic health used throughout does not capture all

diseases that are caused by smoking. For example, the Framingham Heart Study data do not include panel data
for chronic obstructive pulmonary disease (COPD). Given that COPD is the number four leading cause of death in
the United States26, the omission of COPD in the chronic health indicator may understate the importance of both
disease in the probability of death and the extent to which preferences for smoking vary across chronic health
states.
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data to this level stems from the computation burdens of estimating additional parameters in

the structural model. As in the theoretical model, I assume that upon transiting to a chronic

health state, an individual remains in that state for life. The incidence of new chronic condi-

tions is in column 3 of Table 5.

IV Empirical Implementation

In estimating the model described in Section II with the data described in Section III,

there are four hurdles. The first main hurdle lies in the timing of the health exams. While the

data contain only seven exams over a 40-year period, the theoretical model is based on a yearly

decision making process over a finite time horizon. As explained below, I exploit retrospective

questions in the data to construct a dataset that mirrors the timing of the model. This process

generates yearly data for all variables in the theoretical model except health marker data for

years in which no health exam took place. To overcome this problem, I use predictions from

solution to the model to integrate over “off years” as well as to explain the initial condition for

each individual. Given the expanded dataset, the second hurdle is that state variables Ai t and

Ri t must be constructed from the Framingham Heart Study data in such a way as to capture

an individual’s smoking history and health markers, respectively. For each of these variables,

I employ principal component analysis in a method similar to that of Sickles and Williams

(2008). The third hurdle is the identification of the model parameters. As I describe below,

variation in the timing of health exams across individuals helps to identify the model. Finally,

the last hurdle involves modeling permanent unobserved heterogeneity. This section ends

with a discussion of my solution method, likelihood function construction, and maximization

routine.

IV.1 Health Exam Timing

While I observe individuals at only seven health exams over a 40-year period, the the-

oretical model is based on a yearly decision making process. To reconcile this difference, I

proceed in the following steps. First, in solution to the model, I specify the final period, T ,

to be at age 100. That is, the probability of death at the end of period T equals one. The

yearly model is then solved recursively back to age 7, at which point I assume that all indi-

viduals have a smoking stock of zero (i.e. Ai7 = 0, ∀i). Second, the data from Section III

are expanded based upon retrospective questions. With the exception of the health marker

information needed to construct the health marker index, Ri t , data are available to construct

a yearly dataset from age seven until an individual either dies or completes his or her seventh

exam. Data in years prior to an individual’s first exam were constructed based on questions at

18



the first and second exams that asked, if applicable, the first age at which one started smoking

and the age at which one stopped smoking. For later years in between health exam years,

smoking data were imputed based on history and adjacent health exam data. Specific dates

are available in the data for any chronic health and mortality events.

Figure 1 shows the sample probabilities for each smoking choice by age. Because figure

1 reports smoking percentages by age, for older ages, the data become noisy because of ei-

ther right-censoring or death. Of the 3008 observations considered, 15%, or 464 individuals,

leave the sample through death. Table 6 shows general smoking summary statistics from the

expanded data. On average, if an individual ever smokes, he/she starts just before age 20,

although the median age is 18. Table 7 reports smoking behavior transitions around health

exams and chronic health shocks, as well as the overall average transitions. Conditional upon

an individual’s smoking behavior one period prior to each event, the table reports percentages

in each smoking option one and three years after the event. For example, of those individuals

smoking heavily one period prior to a chronic health shock, 70.24% continued to smoke heav-

ily one period after the shock and 47.06% were still smoking heavily three periods after the

shock. In both event cases, more individuals had quit smoking three years post as compared

to one year post, but considerably more had quit three years after an event than the baseline

set of transitions. The table provides at least antidotal evidence that each event (health exams

and chronic health shocks) alters smoking behavior in the sense that the magnitudes of the

transitions, both one and three years post, are larger than the overall transitions.

IV.2 Continuous State Variable Construction

For the model to both remain computationally tractable and be consistent with the

assumption of conjugate distributions, I need continuous, scalar representations of both an

individual’s smoking history and her health markers. For both the health marker index and

the smoking stock, I use the first principal component of a principal component analysis (PCA)

procedure to capture these variables. The first principal component is constructed as a linear

combination of data and of factor loadings from the highest eigenvalue eigenvector from an

eigenvector decomposition of the variables’ correlation matrix. The trade-off with PCA is both

completeness and interpretation. Only considering the first principal component implies that

any remaining variation in the data (i.e. the second, third, fourth, etc. principal components)

is lost. Furthermore, because the weights used to construct the index are derived only from

the correlation between the variables themselves, the relative magnitudes of the weights may

come into question when predicting an outcome of interest (e.g., mortality). In the context of

most structural models, however, reducing the dimension of the data is clearly advantageous.
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In constructing Ri t , the health marker index, I use PCA with the following (standard-

ized) variables: systolic blood pressure, diastolic blood pressure, total cholesterol, high-density

lipoprotein (HDL) cholesterol, and a diabetes dummy. PCA is most effective when there exists

significant correlation between the variables. As one might expect, the correlation between

these health markers is high. As noted in Section III, these health markers are identified by

the Framingham Heart Study as significant predictors for an individual’s general 10-year risk

of cardiovascular disease.27 The first principal component of these variables explains approxi-

mately 33% of the total variation. Unfortunately, this implies that two-thirds of the variation in

health markers is being lost. However, I now have a continuous index of health markers. I see

two main justifications for using the first principal component as my measure for the health

markers. First, the theory places no restriction on the amount of information that Ri t must

convey, only that it conveys some information. Any computationally tractable definition of Ri t

will have to be an approximation. That I can explain a third of the variation in the variables

that the medical literature view as signficant will at least inform to some degree. Second, most

papers that use PCA use first principal components that explain between 20%− 40% of the

total variation.2829

To provide intuition as to the weights used to create the health index, Table 8 presents

the eigenvector values associated with each health marker. In this context, the continuous

health index can be interpreted as a measure of bad health (i.e. higher values of the index

imply worse overall health). Note in Table 8 that only HDL, or “good” cholesterol, negatively

affects the health index.

Turning to the smoking stock, as discussed above, the smoking stock summarizes all past

smoking decisions prior to period t. Again using PCA, I define the index Ai t as the first princi-

pal component of the following four standardized variables: total number of years smoking at

time t (experience), number of years smoking at time t since last year not smoking (tenure),

number of years at time t not smoking since last year smoking (cessation), and the intensity

27While influential in predicting cardiovascular disease, there is no evidence that suggests that these health
markers predict different forms of cancer. In the context of the model, a summary of these health markers will
have less predictive power on the chronic health state if that state is defined as an aggregation of cardiovascular
disease and cancer. However, these markers still provide an overall assessment of an individual’s health. The
extent to which these markers may influence smoking behavior through the Bayesian updating process is an
empirical question.

28In the context of socioeconomic indices, see Vyas and Kumaranayake (2006) for a good overview of PCA.
29As an alternative to using the PCA to construct the health marker index, I have also considered using the

weights suggested by the Framingham Heart Study General Cardiovascular Disease, 10-year risk assessment. The
weighted index of health markers from Framingham is highly correlated with the PCA index used in this paper
(correlation coefficient of 0.79). Furthermore, in reduced-form regressions, the PCA generated index better
predicts chronic health and mortality outcomes.
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of smoking in the previous period, t − 1.30 The first principal component explains nearly 52%

of the total variation in these four variables.

To aid in interpretation of both the resulting smoking stock and the associated parame-

ters to be estimated, I normalize the smoking stock as follows. First, I run PCA on just those

with some smoking history. That is, individuals with any observed or reported past smoking

in each period are included in the PCA. For example, if an individual takes her first exam

at age 18 and begins smoking at age 22, all observations from this individual after age 22

are included in the PCA, whereas observations prior to 22 are not included. Second, I shift

the distribution of the resulting index such that the person with the lowest value has a stock

approximately equal to zero. Finally, for individuals with no smoking history, I assign a stock

value of zero. Table 9 reports the weights on the four variables of interest in the smoking stock.

Notice that while experience, duration, and smoking intensity of an individual all increase the

stock index, cessation from smoking decreases the stock. Therefore, I interpret higher values

of the index as more accumulated smoking stock capital.

IV.3 Identification

Generally, the structural model is identified from the variation in the timing of the health

exams. While the number of years between health exams does not directly affect health31,

observationally equivalent individuals with different time gaps between exams may select

different smoking patterns. The different smoking patterns may arise because different time

gaps will induce variation in the belief distribution across individuals. For example, if, after

completing their second health exam at the same time, one individual receives her next exam

in three years while another individual receives her next exam in five years, the data may show

different smoking patterns during the two years in which the first individual had a different set

of beliefs. Indeed, the transition matrix in Table 7 shows that individuals change their smoking

behavior around health exams more than average. Table 10 provides a sense of the variation

in the number of years between exams (the vertical tab) for each exam (the horizontal tab).

While the gap between the first and second exam is clearly the longest, and the time gap

shrinks at later exams, each exam exhibits considerable variation across individuals in the

number of years to be administered.

30Intensity is measured as the average number of cigarettes per day. Each of these smoking variables is mea-
sured as the value entering the examination.

31The considerable time lag between exams is because the Framingham Heart Study administers health exams
in time “windows”. However, there is no evidence to suggest that those with worse health markers select into
smaller time gaps between exams. Indeed the correlation coefficient between the health marker index and the
number of years between exams is -0.008

21



The following set of parameters are to be estimated.

Utility Parameters: ΘU =
�
α0h, . . . ,α11h

	1
h=0

Health Transition Parameters: ΘH =
�
λ0, . . . ,λ10

	
Death Transition Parameters: ΘM =

�
ω0, . . . ,ω12

	
Smoking Stock Parameters: ΘA =

¦
δ1,δ2,δ3,ση

©

Learning and Risk Parameters: ΘR =
¦
θ ,σθ ,σν ,φ,ζ

©

Factor Loadings: Θρ =
§n¦

ρUhd
©1

h=0

o2

d=0
,ρH ,ρM ,ρR,ρA

ª

Additionally, I estimate the probability weights of the mass points for the discretized distri-

bution of the permanent unobserved heterogeneity, µ. Let Θ =
¦
ΘU ,ΘH ,ΘM ,ΘA,ΘR,Θρ

©
. In

order to identify the preference parameters, I normalize the utility of death to be zero. Rel-

ative to this normalization, identification of the preference parameters comes mainly from

variation in smoking behavior and health and death transitions over time. For example, differ-

ent smoking choices across the smoking stock, health marker index, and age levels identifies

the interaction preference parameters. Furthermore, the withdrawal parameter, α9·, is iden-

tified off of variation in the choices of individuals after a period in which an individual quits.

Thus, conditional upon having smoked in the previous period, both the reinforcement, α2· and

α6·, and withdrawal effects, α9·, encourage current period smoking. However, withdrawal is

separately identified from the reinforcement effects because, while the smoking stock variable

depreciates at rate δ1 following cessation, the utility cost paid from withdrawal only lasts one

period. Finally, the direct impacts of the stock on utility, α10· and α11·, reflect tolerance in

smoking and are identified by individuals that progress from light to heavy smoking.

In the absence of subjective expectation data, the structure of the model is needed to

identify the presence of learning. Mira (2007) notes that learning can no more be identified

than can rational behavior in the sense that, the model assumes that behavior (learning) fol-

lows from the defined structure. If, however, the prior distribution of beliefs is proved to be

degenerate (i.e., if the null hypothesis that σθ = 0 is not rejected), then the results would

suggest an absence of learning. The identification strategy of the specific learning parameters

is therefore quite subtle. While identification of θ comes from variation in the smoking stock

and health marker index, variation in smoking by individuals over time identifies σθ (Craw-

ford and Shum, 2005). If, indeed, individuals are learning over time, choices at the end of the

time frame relative to the beginning should better reflect an individual’s true match value, θi.

An additional source of variation that helps to identify the learning parameters is the variation

across individuals in the timing of health exams. There exists considerable variation in the

number of years between exams across individuals; thus, two similar individuals that receive

health information at different frequencies may develop different smoking patterns. Because

of the assumption of conjugate normal distributions, identifying the mean and variance of
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θi, in addition to the variance of ν , which is identified from the health marker index transi-

tion equation, is sufficient to characterize the learning process. Finally, the identification of

chronic health and death transition parameters comes from variation in the state variables and

the observed incidence of chronic health and death.

IV.4 Permanent Unobserved Heterogeneity and Initial Conditions

Permanent unobserved heterogeneity enters the model in a linear fashion through the µ

term and the associated factor loadings. The factor loadings allow for a different effect of the

unobserved µ term everywhere it enters. Rather than placing a distributional assumption on

the underlying unobserved heterogeneity, I approximate its distribution with a step function

and estimate the factor loadings and mass point probabilities with other parameters in the

model (Heckman and Singer, 1984). This discrete factor method has been shown to approxi-

mate both Gaussian and non-Gaussian distributions well (Mroz, 1999).

I first observe individuals at various points in their life cycle (i.e., different ages at the

first health exam) and with a variety of health histories. Failing to properly model these histo-

ries would lead to an initial conditions problem. Furthermore, the initial conditions problem

may lead to an issue of dynamic selection into smoking behaviors. That is, individuals in some

permanently lower (unobserved) health state may select into smoking. However, solution to

the model generates individual probabilities of choice behavior and health/death transitions

for all ages beginning at age seven. Recall that data exist for all smoking, chronic health, and

death events from age seven until either death or the final health exam (exam 7 in the data).

At age seven, I assume that each individual has a smoking stock of zero and has no chronic

health problems. The only remaining initial condition is the initial health marker index upon

entering the sample. Using the model, I can simulate a health marker index for each period

from age seven until the first observed health exam. Hence, I use the model to generate prob-

abilities of an individual’s health history when they are first observed in the sample (Khwaja,

2010). Individuals enter the sample aged between 13 and 62 years. At age seven, I assume

that the lagged value of the health marker index is in the 90th percentile (e.g., good health) of

each health marker that is used to construct the index. I then use the weights from the princi-

ple component analysis to construct the lagged value. Recall that the simulated health marker

index is scaled by demographic characteristics, X i t , as well as the unobserved heterogeneity,

µ, term and its factor loading. Furthermore, individual variation in the data at the first exam

(the initial condition) helps to identify parameters of the model.
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IV.5 Likelihood Function

Solution of the model yields the conditional choice probabilities that enter the likelihood

function. In solving the model, I use a variant of the Keane and Wolpin (1994) value function

interpolation method for approximating the value function. Appendix A thoroughly explains

my solution technique.

The parameters of the model are estimated via simulated maximum likelihood. In con-

structing the likelihood function, consider first the contribution of individual i. Given that

ηi t ∼ N (0,σ2
η) and νi t ∼ N (0,σ2

ν), I can express the probability density functions of Ai t and

Ri t respectively as:32

Λt = f (ηi t |Ai t−1, di t−1,µ,ρA,ΘA) =
1

ση
φ
�
[logAi t −δ1logAi t−1−δ2dt−1−ρAµ]/ση

�
(11)

and

Ωt = g(νi t |X i t ,κi t ,µ,ρR,ΘR) =
1

σν
φ
�
[Ri t − ζRi t−1− X i tφ −κi t −ρRµ]/σν

�
(12)

where φ(·) is the standard normal distribution. Recall, however, that the health marker index,

Ri t , and only the health marker index, is unobserved in periods in which a health exam was

not taken.33 I must, therefore, integrate over Ri t in all periods with no health exam. For ease

of exposition, define the dummy y as follows:

yi t =
�

1 if An exam was taken in year t
0 if No exam was taken in t

�

Let w index the draw from the Monte Carlo simulator. Define Z y=1
i tw |µ as individual i′s like-

lihood contribution in period t for draw w when yi t = 1 and conditional on unobserved
heterogeneity term µ:

Z y=1
i tw |µ=

2∏
d=0

�
p(di t = d|si t ,µ)∗Λt ∗Ωt ∗

1∏
h=0

�
πdh

t+1|µ
�1[Hi t+1=h]∗

1∏
m=0

�
ςdm

t+1|µ
�1[Mi t+1=m]

�1[di t=d]

. (13)

Here, πhw
t+1 represents the probability of transiting to health state h in period t + 1 and ςmw

t+1 is

the probability of transiting to death state m in period t + 1, given draw w . Unless a health

exam was taken in the period directly before t, the lagged value of the health marker index

in equation 13 is unobserved. In practice, I use the expected health marker index given the

32Note that the i subscript has been dropped from the permanent unobserved component, µ. As is shown
below, in the empirical model, the distribution of µ has been discretized to K points of support and is integrated
out of the likelihood function.

33All right-hand side terms in the health marker equation are observed in these “off” years due to retrospective
questions and/or imputation with the exception of the lagged value of the health marker index when the previous
period did not contain a health exam.
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model parameters and the lagged value. In periods in which yi t = 0, define the expected

health marker index, conditional on the model parameters as:

eRi t = Eν(Ri t |ΘR, Si t ,µ) (14)

Here, the expectation operator is taken over the i.i.d. noise term, ν . Other probabilities in the
model are conditional on eRi t for years in which yi t = 0.34 In the period directly after a health
exam, the lagged value of the health marker index (i.e., from the exam and not the simulated
term) is used in the construction of eRi t . Therefore, define Z y=0

i tw |µ as individual i′s likelihood
contribution in period t when yi t = 0:

2∏
d=0

�
p(di t = d|si t ,eRi t ,µ)∗Λt|eRi t

∗
1∏

h=0

�
πdh

t+1|eRi t ,µ
�1[Hi t+1=h]∗

1∏
m=0

�
ςdm

t+1|eRi t ,µ
�1[Mi t+1=m]

�1[di t=d]

. (15)

The total conditional (on µ) likelihood contribution from individual i for all time periods

7, . . . , Ti, where Ti is either the period of an individual’s death or their final exam, is:

Liw(Θ|µ) =
Ti∏

t=7

h 1∏
y=0

�
Z y

i tw|µ
�1[Yi t=y]i

. (16)

Because of the discretized distribution of the unobserved heterogeneity, each individual’s un-

conditional contribution will be a finite mixture of likelihoods. Given K points of support in the

estimated distribution of µ, the unconditional likelihood function contribution for individual i

is:

Liw(Θ) =
K∑

k=1

ξk Liw(Θ|µk). (17)

Where ξk is the estimated probability weight placed on mass point k. Individual i’s contri-

bution to the likelihood is then the average contribution over the w draws. The full sample

log-likelihood function is:

L(Θ) =
h N∑

i=1

log Li(Θ)
i

. (18)

The parameter estimates in Θ are estimated via a nested solution method (Rust, 1987). The

inner algorithm solves the dynamic model for each individual conditional on a given set of

parameters and for all mass points of the unobserved heterogeneity distribution.35 Using the

resulting probabilities, the outer algorithm calculates the unconditional likelihood function,

L(Θ), and attempts to improve the likelihood value via a BHHH gradient method.

34For years in which there was no health exam, the draw w also includes a draw of the contemporaneous ν
such that I may integrate over R.

35 See Appendix A for a discussion of the inner algorithm.
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V Results

Table 11 reports the main parameter estimates and their corresponding asymptotic stan-

dard errors. The estimated utility constants, α00 and α01, for the absence of a chronic health

condition and a chronic health condition respectively, are quite intuitive given that the util-

ity of death has been normalized to zero. The total marginal utility of current period light

and heavy smoking is a function of α1· . . .α8·. A key component of rational addiction the-

ory, indeed the defining feature of an addictive good under rational addiction, is that past

consumption reinforces current consumption. That is, the marginal utility of smoking is in-

creasing in the smoking stock. My results are consistent with this adjacent complementarity

defined in Becker and Murphy (1988). In the absence of a chronic illness, both light and heavy

smoking are found to be reinforcing (i.e., α20, α60>0). Indeed, I find that heavy smoking is

much more “reinforcing” than light smoking. My results also suggest that the marginal utility

of light smoking in the absence of a chronic condition is invariant to the health marker in-

dex but increasing in age. Interestingly, the marginal utility of heavy smoking is decreasing

in the health marker index and invariant to age when free of a chronic condition; however,

when chronically ill, the marginal utility of heavy smoking is increasing in the health markers

(α71 = 0.001) and decreasing in age. Withdrawal from smoking, (i.e., smoking in period t−1

and not smoking in period t) is negative for all health states and larger in magnitude when

free of a chronic illness. The withdrawal effect, in addition to the strong reinforcement effect,

both drive smokers to continue smoking. Finally, the tolerance effect (α10·) flips sign across

health states. In the absence of a chronic condition, smoking is found to have a tolerating

effect (i.e., lower utility from a larger smoking history).

Several interesting trends emerge from these results. First, note that baseline marginal

utility of both light and heavy consumption is negative with the exception of heavy smoking

with a chronic condition. As suggested by the rational addiction literature, the model cannot

explain why individuals start smoking. Consider that over 90% of smokers in the data start

smoking before age 25 and no individuals in the data under the age of 25 have a chronic con-

dition. The estimated preference parameters in the absence of a chronic illness suggest that,

for a never smoker under the age of 25, there is no incentive to begin smoking because the

marginal utility of smoking is negative. Furthermore, the dynamic considerations of the model

suggest that smoking will increase the probability of future chronic illness and death through

the smoking stock and the health marker index. However, upon commencing smoking, the

resulting positive smoking stock drives the dynamics forward. Competing effects for a new

smoker include the reinforcement and withdrawal effects, which both encourage more smok-

ing, and the increased probability of chronic disease and death, which encourage cessation.
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The second main trend from the estimated preference parameters is the reversal in sign

of several preference parameters upon succumbing to a chronic illness. The baseline marginal

utility of heavy smoking when in the chronic health state (α51) flips to positive. Along with

the positive reinforcement (α21,α61 > 0) and the flip in the sign of the effect of the stock on

utility (α101 > 0), individuals now face a positive marginal utility from heavy smoking.

The model finds evidence of a wide degree of individual variation in the effect of the

smoking stock (Ai t) on the health marker index (Ri t) as the estimated standard deviation of

θ , σθ , is large relative to its mean (θ). Recall further that the null hypothesis of σθ equaling

zero is my explicit test for the presence of learning. While the results do suggest the presence

of learning, the signals received at each health exam are quite noisy. The estimated standard

deviation of the random error term (σν) is large relative to θ and σθ .

Table 12 provides estimates of all other estimated model parameters. These estimates

are not marginal effects and therefore are difficult to interpret because each outcome (health

marker index, chronic health, death, etc.) is a complex function of entering period states and

per-period decisions. In the simulation subsection below, I describe the results of simulations

that isolate the effects of each variable on the system. However, a casual interpretation of

the results in Table 12 does yield some interesting insights. The parameter estimates of the

smoking stock evolution equation indicate that an individual’s stock of smoking depreciates

faster than suggested by the medical literature. δ1 suggests that, given cessation from smok-

ing over the cycle of one year, the smoking stock is reduced by approximately 57%.36 In the

context of the model, 57% depreciation implies that after about six years of smoking cessation,

an individual may have roughly the same health marker index and chronic health and death

tranistion probabilities as a lifelong nonsmoker, all else equal. Additionally, the estimated

magnitude of investment return in the smoking stock is greater for heavy compared to light

smoking (δ2 < δ3).

As noted above, the estimated mean effect of the smoking stock on the health mark-

ers is positive (θ = 0.003). A greater smoking history therefore implies a higher, and thus

worse health marker index. According to Table 12, a higher health marker index implies a

higher probability of chronic illness (through the positive sign on λ1), albeit at a decreasing

rate (λ2<0), and death (through the positive signs on ω1,ω2,ω3,ω5, and ω6. Furthermore,

given a chronic illness, the probability of death is lower during the 1980s (ω7<0) and 1990s

(ω8<0) both relative to before 1980 to capture exogenous advances in medical technology

over time.
36Note that while this suggests a large amount of depreciation, the factor loading on unobserved heterogeneity

for the stock equation slows that depreciation.
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The model is estimated with three points of support for the discretized unobserved het-

erogeneity distribution. Heterogeneity located to the right of the distribution is associated with

a greater likelihood of experiencing both chronic health and mortality shocks. Furthermore,

the health and smoking alternative specific factor loadings in the utility function suggest that,

when free of a chronic illness, the marginal utility of smoking is shifted upward for individuals

with higher values of the unobserved heterogeneity. These effects are exacerbated by the fact

that this type of heterogeneity also implies a smoking stock that depreciates less rapidly and

never fully depreciates. Even worse, this heterogeneity characterizes continued future smok-

ing (through the reinforcement and withdrawal effects) which also effects chronic health and

death shocks (through the positive signs on λ5 and ω4-ω6). The positive factor loadings on

the marginal utility of smoking, along with the positive factor loading on mortality, suggest a

strong positive correlation between the underlying factors that influence both outcomes. In-

deed, these results suggest that individuals that are more likely to smoke, are also more likely

to die independently of smoking. I provide further evidence of this correlation in the model

simulation section below.

V.1 Model Fit

Figure 2 summarizes the relationship between the model’s predicted probabilities and

the observed data by age. Each pane of the figure represents one specific smoking option. For

each individual, I compare observed smoking decisions and predicted smoking probabilities

for periods up to either her final exam (exam seven) or death. I then average the results

across individuals at each age.37 The model predictions generated from the solution routine

fit the data well even at ages for which there are not many observations.

Table 13 reports sample and predicted smoking probabilities by health exam and health

state. I do not include a table on model fit by exam conditional on being in the chronic health

state because less than one, three, and seven percent of individuals have a chronic condition

in exams one, two, and three respectively. Note however that the average predicted choice

probability across all health exams conditional on being in the chronic health state mirrors the

observed probabilities in the data fairly well. Table 13 suggests that the model does a good

job of predicting whether or not an individual smokes at all. The model slightly under predicts

light smoking and slightly over predicts heavy smoking.

Figure 3 compares the observed sample probabilities of chronic health with the predicted

health probabilities, as generated by the model at the estimated parameter values. As in Figure

2, Figure 3 averages predicted and sample probabilities across individuals by age only for those

37Despite the fact that the model is solved from age 7 to 100, the figure only presents results for ages 20 to 75.
Outside of the 20 to 75 age range, there are insufficient data for an informative comparison.
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individuals with an observation at that age. Figure 3 reflects both transitions to and surviving

members of the chronic health state. This is because solution to the model yields a predicted

probability of transiting to a chronic health state of one for individuals already in that state.

Note that for most ages, the model slightly over predicts the probability of being in a chronic

health state.
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V.2 Model Simulation

In this section, I simulate smoking behavior and health outcomes using the structural

model and the estimated parameters. I address how smoking affects morbidity and mortality

outcomes as well as how learning from personalized information may impact these behaviors

and outcomes. My simulations proceed as follows. First, I construct a simulated sample of

1000 individuals that mirrors the joint distribution of observable demographic characteristics

(education, gender, marriage, and initial age upon entering the Framingham Study) of the

Framingham sample. Next, for each simulated individual i, I construct 50 sets of match value,

unobserved heterogeneity, and error draws over the estimated time frame.

n
θik,µik,

¦
νikt ,ηikt ,

�
εiktd

	2
d=0

©100

t=7

o50

k=1
.

Smoking behavior and health outcomes are then simulated for each of the 50,000 observations

from age seven until death.

First, I reconstruct Table 7 using the simulated smoking behavior to evaluate the model’s

performance in capturing smoking transitions around significant events. These results are

reported in Table 14.38 For those simulated to be not smoking prior to a health exam or a

chronic health shock, the simulated smoking probabilities one and three periods after these

events mirror those from the data. The model does less well in simulating behavior condi-

tional on lagged light or heavy smoking. While the simulated probabilities of not changing

behavior after one of the two events reflect those from the data, the model tends to under

predict the probability of quitting and over predict the probability of switching to a different

smoking intensity. However, the model does capture the general trend that more individuals

have quit three years after an event when compared to one year after.

Next, I use the simulated model to address how smoking impacts the age of chronic

health onset and death. Figure 4a reports, by age, the percentage of the simulated sample

with a chronic condition while forcing individuals to 1.) never smoke, 2.) smoke lightly from

age 18, and 3.) smoke heavily from age 18.39 Under these same forced behaviors, Figure 4b

shows, by age, the percentage of the simulated sample that remains alive. The results in Fig-

ure 4 confirm the findings in Sloan et al. (2003) that the detrimental effects of smoking occur

largely after the age of 50. Indeed, the gap in the percentage of the sample in the chronic

health state between never smokers and heavy smokers widens from less than 10% at age

50 to more than 17% at age 70. Similarly, while the difference in those surviving to age 50

between heavy and never smokers is five percentage points, that gap widens to 30 percentage

38Transitions around health exams are unconditional on chronic illness.
39Recall from the structural model that I assume that, upon transiting to a chronic health state, an individual

remains in that state for life.
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points at age 70. These results are roughly inline with those of Doll et al. (2004). Those

authors find a difference of approximately 28 percentage points at age 70 when considering

never smokers and smokers. The first half of Table 15 reports the mean age of onset for var-

ious health outcomes. Individuals who are forced to smoke lightly and smoke heavily from

age 18 onwards face a mean age of chronic health onset that are approximately two and four

years earlier than those forced to never smoke. While Doll et al. (2004) report that smoking

shortens the lifespan by ten years, my results suggest the reduction is approximately four and

eight years for light and heavy smoking, respectively.40

While Doll et al. (2004) only condition their results on decade of birth and gender, I

report results that are conditional on both observed and unobserved factors. Here, I high-

light the importance of incorporating unobserved heterogeneity. Figure 5 plots the same two

graphs as in Figure 4 but now conditions each result by unobserved “type”. Panels a. and

b. report health outcomes assuming that all simulated individuals never smoke. Note that

while unobserved heterogeneity does not play a significant role in chronic health transitions,

the model predicts that type three individuals face lower expected longevity. Recall that the

alternative specific factor loadings in the utility function greatly increase the marginal utility

of smoking for individuals of a higher type. Indeed, the model predicts that only individuals

with the largest mass point, type three, will ever smoke. Therefore, Figure 5 demonstrates

that, independent of smoking, individuals of a higher type face lower expected longevity.

Next, I use the model to simulate chronic health and death outcomes under different life-

time smoking paths to assess the impact of smoking cessation on these outcomes. I simulate

health outcomes assuming that an individual smokes heavily from age 18 and quits forever at

ages 30, 40, 50, and 60. The results, reported in Table 15, imply that quitting smoking at ages

30, 40, 50, and 60 years of age increases life-expectancy by approximately 8, 7.75, 7, and 5.5

years, respectively. These results suggest clear life expectancy gains from quitting at all stages

of the life cycle. Figure 6 shows the survival percentages by age for the different smoking pat-

terns. Note that for individuals that quit at age 30, their expected longevity is roughly identical

to never smokers. Similarly, quitting by age 40 has minimal effects on mortality probabilities.

Individuals that smoke into their fifties and sixties, however, have a much more likely chance

of dying prematurely. These results, although smaller in their absolute numbers because of

the treatment of the positive selection between smoking and mortality, mirror the results of

Doll et al. (2004) and other studies that have examined smoking cessation.

Given the other main focus of this paper on the value of personalized health information,

I next evaluate policies that alter either the timing or the frequency with which information

40Doll et al. (2004) do not take into account intensity of smoking in these calculations. My results indicate that,
conditional on smoking, the intensity with which one smokes is an important factor explaining health outcomes.
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is received. First, to demonstrate the speed at which individuals learn, Table 16 reports the

change in the average posterior variance after each health exam of the baseline simulation.

Note that after the first exam (i.e., the first signal of information) the posterior variance de-

creases by nearly 20%. By the seventh exam, the mean posterior variance has been decreased

by 40%. In spite of the “honing in” on individuals’ true match values, smoking behavior ap-

pears to only slightly be influenced by learning.

As a natural benchmark, I compare the predictions of the baseline model to results from

specifications with complete information (i.e., τi t = θi ∀t) and a situation where an individual

undergoes yearly health exams as opposed to every two to eight years. Figure 7 presents the

mean percentage difference of simulated individuals choosing each smoking option for each

information scenario relative to the baseline prediction. First, note the scale of the vertical

axis. Neither of these counterfactual simulations greatly alters model predicted lifetime smok-

ing behavior. Second, any divergence in behavior from baseline appears in light smoking.

Neither counterfactual scenario has any affect on the average probability of heavy smoking.

Between ages 40 and 55, receiving more information about health markers (yearly exams)

does slightly reduce smoking, if only by approximately 0.2%. After age 55, somewhat counter

intuitively, the simulations suggest that the effect of more information, that is, yearly exams,

is only to encourage individuals to smoke lightly. In the extreme, with complete information,

individuals are more likely to smoke lightly at all ages.

One possible explanation for the small results of these counterfactuals is that the effect

of the smoking stock on the health marker index is small (θ = 0.002) and because the esti-

mated standard deviation of the effect is large relative to the mean. Upon learning their true

match value, individuals feel that the health effects of smoking are manageable.41 Another

explanation is that the health markers simply do not greatly predict chronic health and mor-

tality outcomes. While individuals learn about their match value, they place little value on

this information. Ultimately, while my results do confirm that major chronic health shocks to

alter smoking behavior, I do not find evidence that information on personalized health marker

information changes behavior.

41For match values that are negative, there may be an incentive to continue to smoke because an increased
smoking stock will decrease the health marker index, which in turn, will lower chronic health and death probabil-
ities. Other experiments in which health signals where amplified, that is, while the health marker index evolved
according to the simulation, individuals received signals that suggested “scary” results, induced individuals to quit
significantly more rapidly than the baseline results.
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VI Discussion

This study formulates and estimates a dynamic stochastic model of smoking behavior.

The model extends the classic rational addiction model to allow for health learning. By esti-

mating the structural parameters of the model, I capture preferences and expectations in the

tradeoff between smoking and the potential for future health shocks. The structural approach

also allows for counterfactual simulations that a.) assess the importance of health marker

information in the decision to smoke cigarettes, and b.) capture the direct effect of smoking,

and smoking cessation, on different health outcomes while controlling for unobserved hetero-

geneity.

Generally, I find that significant reinforcement and withdrawal effects drive smoking

dynamics by altering the future marginal utilities of smoking. The reinforcement effect is

estimated with a novel construction of past smoking behavior that is consistent with the the-

oretical notion of a “smoking stock”. I empirically construct this stock as a weighted average

of several measures of smoking history using using principal components analysis. Consistent

with the theory, individuals understand that different smoking choices influence the smoking

stock through depreciation and investment coefficients. The smoking stock then reinforces

future smoking, through the marginal utility of smoking, and influences health, through the

health marker index.

Estimates of the structural parameters suggest that there exists heterogeneity in the

effect of the accumulated smoking stock on an index of health markers. Despite this het-

erogeneity, learning about an individual’s own place in the distribution of this effect, at least

in the Framingham Heart Study setting, does not appear to significantly inform smokers about

the long-term health consequences of smoking. In fact, learning about how smoking effects

health markers may actually slightly increase moderate smoking in older individuals. How-

ever, individuals that receive sharp, discrete shocks that imply worse health markers typically

do scale down their smoking behavior (either by quitting or lowering the intensity with which

they smoke). Only when a health marker signal is four times its actual value do simulations

suggest individuals curtail their smoking behavior in any significant sense. Therefore, my

results are consistent with the literature on personalized health information that have found

changes in smoking behavior after serious health shocks (Smith et al., 2001; Sloan et al., 2003;

Khwaja et al., 2006; Arcidiacono et al., 2007).

The lack of a change in smoking to marginal changes in health markers, observed from

Framingham Heart Study health exams, may be evidence of some limitations of this study.

First, while the FHS administers health exams every two to eight years, individuals may be
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observing their health markers at other doctor visits. Interim doctor visits may induce indi-

viduals to quit smoking; however, the econometrician would only observe that the individual

quit. With respect to the model, the observed quitting would be attributed to the preference

error, ε. In this case, the conclusion would not be that health markers are uninformative as

to the implications of smoking, but rather that the Framingham Heart Study signals of infor-

mation do not provide any additional information to what is already known. Because of this

possibility, I interpret my results on as a lower bound on health marker learning.

Second, as noted in Sloan et al. (2003), smoking behavior may be altered by a change

in risk perceptions, which may be changed by new information. Because of the absence of

subjective expectation data regarding the effect of smoking on health markers, I am required

to place more structure on the learning process. Thus, the assumption of conjugate normal

distributions for the signal of information and beliefs may be driving the results. Alternatively,

I could specify a beta/binomial learning process. Here, a discrete signal of information (e.g.,

blood pressure exceeding some threshold) causes individuals to update their continuous belief

distribution.However, learning about multiple health marker discrete shocks would be com-

putationally intractable. Furthermore, it is not clear how one could both define the relevant

signal (i.e., which health marker) and it’s corresponding threshold. I leave different specifica-

tions of the learning process for future work.

I find evidence of positive selection with respect to smoking and mortality by estimat-

ing the correlation in permanent unobserved heterogeneity between these outcomes. Factor

loadings that dictate the effect of the permanent unobserved term on the marginal utility

of smoking and on mortality are both estimated to be positive. This finding suggests that

individuals that are more likely to smoke, are also more likely to die independently of smok-

ing. Interestingly, the factor loadings that capture the correlation in permanent unobservables

across smoking and chronic health and health markers are not statistically different from zero.

This finding suggests that, while there exists an unobserved relationship between the propen-

sity to smoking and mortality, the excess in mortality cannot be attributed directly to chronic

disease (as defined in this paper) or health markers. However, as noted above, if unobserved

factors drive certain individuals to smoke, and smoking predicts the onset of chronic condi-

tions, the unobserved factors may still predict disease related mortality through smoking.

Simulations of the structural model confirm the positive selection and suggest that, when

controlling for unobserved heterogeneity, the effects of smoking on mortality outcomes may

be less extreme than previously estimated. I find that smoking heavily from age 18 can re-

duce life expectancy by eight years relative to life-long non-smokers and by four years for light

smokers (≤ 1 pack/day) from age 18. I compare my results to those of Taylor et al. (2002);

Doll et al. (2004); Brønnum-Hansen et al. (2007) that find overall longevity loss from daily
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smoking to be roughly 7.4-10.5, 10, and 8.7-10.4 years, respectively. Furthermore, quitting

smoking by age 30 implies relatively few chronic health or mortality differences, on average,

from life-long non-smokers; however, waiting to quit until age 60 implies that the health con-

sequences may be severe. Indeed, as suggested by the literature, the major effects of smoking

on health are realized after age 50 (Sloan et al., 2003).

The two main questions of this paper should guide future work. First, are there sources

of information, personalized or otherwise, that effectively convince individuals to stop smok-

ing that also are not major health shocks? Do health markers influence smoking behavior in

settings other than the Framingham Heart Study? It would be interesting to collect subjective

expectation data on risk perceptions in which surveyors explicitly mention individual specific

variation in health markers. Would these data show a role for health markers to change risk

perceptions and subsequent smoking behavior? Second, what are the sources of unobserved

heterogeneity that are shown to be correlated across preferences for smoking and mortality.

Surely alcohol consumption may confound smoking and mortality, but what other factors?

Finally, would controlling for and modeling parental smoking behavior or parental health out-

comes significantly change the role of unobserved heterogeneity in the results of this paper?
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Appendices
A Solution

The computational hurdle in calculating the conditional choice probabilities in equation

10 is to solve for the integrated Bellman (EMAX) equation in equation 9. Technically, the

EMAX equation must be solved for all possible points s in the state space Si t . However, given

the long time frame of the model and the mixed discrete/continuous nature of the state space,

I employ a variant of the Keane and Wolpin (1994) value function interpolation method for

approximating the value function. This method amounts to drawing from the state space,

calculating the resulting EMAX function for each draw, and interpolating the EMAX function

for all other points. The end goal of this procedure is to generate choice probabilities for each

individual i, in each time period t, conditional on the unobserved heterogeneity µ and a trial

set of the parameters, to enter the likelihood function. My iterative solution method proceeds

in two main steps: model simulation and individual specific solution. While the first solu-

tion step yields value function regression coefficients from the simulated model, the second

step uses these coefficients to calculate the conditional choice probabilities, health marker and

smoking stock densities, and chronic health and mortality transition probabilities.

The first step of the solution method is to solve the model for a group of simulated in-

dividuals. The goal of this step is to generate a set of regression coefficients that map from

the state space to the value function. Because the time horizon is finite (T = 100), I can

solve the model using backwards induction and I avoid iterating on the value function itself.

Starting in the final period T , I draw n state vectors and sequences of past smoking behavior

DiT−1 =
�

di1, . . . , diT−1

	
.42 Each of these n draws represents one simulated individual. For each

of the n draws, I construct the main equations of the model for period T . Note that because

the probability of death at the end of period T equals one, each of the choice specific value

functions in period T simply equals the current period utility from the smoking alternative.

Next, I posit a relationship between the n calculated value functions and a set of regressors.

The regressors include the drawn state variables in addition to interaction and higher-order

terms. I then run the regression and generate coefficients that are specific to time period T .

Next, I repeat the above steps for period T − 1. When calculating the expected value function

in period T − 1, I use the regression coefficients from period T to approximate the expected

future value function. I repeat the above process for all periods back to age seven, t = 7; that

is, I solve the model for all ages between 7 and 100.

The first stage process is conditional on three factors. First, I conduct the simulation

42In practice I set n= 100.
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above for each possible age at which an individual may have taken her first health exam.43

Second, I discretized the support of the unobserved heterogeneity distribution into K points.44

For each point k of µ, in addition to each age at the initial health exam, I conduct the above

simulation. Thus, I have a full set of value function regression coefficients (from age 7 to

100) for each age at initial health exam and for each unobserved type, µ. Finally, the value

function regression coefficients are also conditional on the trial set of parameters used to solve

the model.

The second main step, conditional on the same trial set of parameters and using the

above regression coefficients, involves solving the model for each individual. For each individ-

ual, I solve the model backwards from age 100 to generate conditional choice probabilities,

health marker and smoking stock densities, and chronic health and mortality transition prob-

abilities. This process is complicated by the fact that I only have data for the health marker

index in some periods.

In each period in which individual i undergoes a health exam, he/she must forecast the

future evolution of the state variables and the resulting values associated with all current and

future smoking decisions. Luckily however, because the value function regression coefficients

approximate the next period value function, I must only construct the expected value of the

next period state variables conditional on the current period smoking decision. Because the

chronic health and mortality logit probabilities have closed-form expressions, assuming ratio-

nal expectations makes the next period chronic health and mortality transition expectations

straightforward. To forecast the smoking stock and health marker index values one period

forward, I use a Monte Carlo method. Conditional on each draw of the Monte Carlo simulator,

I construct all other probabilities in the model.

For time periods in which no health exam was taken, in addition to integrating over the

future values of the smoking stock and health marker index, I must also integrate over the

current period value of the health marker index. In this case, I use the same method as inte-

grating over the future health marker index, only using different draws (from those used to

integrate over the future term) of the i.i.d. error term ν . All other probabilities in the model

are constructed conditional on the drawn value of the current period health marker index and

averaged.

43In the data, the ages range from 13 to 62. As noted above, there exists great variation in the data in the
timing of the health exams. However, in the simulation, regardless of age at the initial health exam, I use the
average number of years between exams to avoid having to simulate the model for all possible combinations of
exam sequences.

44In practice I set K = 3.
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B Bayesian Updating

Here, I derive the posterior beliefs discussed in the main text (Equations 4 and 5). I

assume rational expectations such that an individual’s initial belief upon entering the sample

regarding their true θi is the population distribution:

E0(θi) = τi0 = θ

V0(θi) =ψi0 = σ
2
θ .

Consider an individual in period t with smoking stock Ai t . For ease of exposition, assume that

an individual takes a health exam each period. When deriving the posterior beliefs in period

t, an individual considers only her prior beliefs (τi t−1,ψi t−1) and her signal of information ki t .

According to Bayes’ Rule, the posterior distribution, ft , of θi is given as:

ft(θi|κn,τi t−1,ψi t−1)∝ ft−1(θi)g(κi t |Ai t ,θi,σν). (B.1)

Note that while g(κi t |Ai t ,θi,σν) conveys information about κi t , an individual knows Ai t and,

because θi is time invariant, can therefore infer information about θi over time. This will

become more clear in the interpretation of the posterior mean and variance. First consider

g(κi t |Ai t ,θi,σν):

g(κi t |Ai t ,θi,σν) =
1

(2πσ2
ν)

1
2

exp
� 1

2σ2
ν

(κi t − θiAi t)
2
�

. (B.2)

Note that because we are concerned with the distribution of θi, any term that does not include

θi can be treated as part of the normalizing constant. We can ignore the first term within the

parenthesis:

∝ exp
� −1

2σ2
ν

�− 2θiκi tAi t + θ
2
i A2

i t

��
.

Simplifying and completing the square yields:

∝ exp
�
− A2

i t

2σ2
ν

�
θi −

κi tAi t

A2
i t

�2
�

.

Notice that the term subtracted from θi is the within (individual i) variation ordinary least

squares estimate of θi from the nth signal of information. Define θ̂i t =
κi t Ai t

A2
i t

. Substituting for

θ̂i t , we have that:

g(κi t |Ai t ,θi,σν)∝ exp
�
− A2

i t

2σ2
ν

�
θi − θ̂i t

�2
�

. (B.3)

Now consider the prior probability distribution of θi:

ft−1(θi) =
1

(2πψi t−1)
1
2

exp
� 1

2ψi t−1
(θi −τi t−1)

2
�

. (B.4)
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The nice aspect of the conjugate distribution assumption is that we can characterize the poste-

rior distribution sufficiently with closed form expressions for the posterior mean and variance.

Therefore, we only have to characterize that part of the posterior density that captures the

mean and variance. In that light, consider the product of the exponential portions of Equa-

tions B.3 and B.4 after rearranging terms and absorbing those without θi into the normalizing

constant:

ft(θi)∝
�
− 1

2ψi t−1σ
2
ν

�
θ 2

i

�
A2

i tψi t−1+σ
2
ν

�− 2θi
�
A2

i tψi t−1θ̂i t +σ
2
ντi t−1

���
. (B.5)

After rearranging and completing the square, we have the kernel of a normal distribution

representing the posterior distribution:

ft(θi)∝
�
− A2

i tψi t−1+σ2
ν

2ψi t−1σ
2
ν

�
θi −

�A2
i tψi t−1θ̂i t +σ2

ντi t−1

A2
i tψi t−1+σ2

ν

�2
��

.

The posterior mean and variance is:

τi t = E(θi|κt ,τi t−1,ψi t−1) =
�

A2
i tψi t−1

A2
i tψi t−1+σ2

ν

�
θ̂i t +

�
σ2
ν

A2
i tψi t−1+σ2

ν

�
τi t−1 (B.6)

ψt = Var(θi|ψi t−1,σν) =
ψi t−1σ

2
ν

A2
i tψi t−1+σ2

ν

. (B.7)

Rearranging these equations yields the posterior mean and variance equations above.
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Figure 2: Smoking Behavior by Age: Predicted and Sample Probabilities
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Figure 6: Percentage of simulated sample remaining, by age and quit status
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Table 1: Sample Construction

N Description
4989 Framingham Heart Survey Offspring Cohort Participants - Restricted Sample
3730 Sample after dropping those individuals that skipped one or more of the health exams
3008 Sample after dropping all person/year observations of individuals who attrit
3008 unique individuals yields 19461 person/year observations.
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Table 2: Sample Characteristics by Exam

Exam Mean Year Mean Age St. Dev. Age % Female % Married # Individuals
1 1973 37.0 (10.28) 50.0 80.5 3008
2 1981 44.3 (10.05) 50.1 82.9 2921
3 1985 48.3 (9.99) 51.1 83.0 2849
4 1988 51.5 (9.99) 51.5 80.6 2796
5 1992 55.0 (9.83) 52.1 79.9 2709
6 1996 58.6 (9.69) 52.7 77.2 2613
7 1999 61.5 (9.58) 53.1 74.7 2565

Ages in the sample range from 13 in exam 1 to 88 in exam 7.

Table 3: Education

Education % of
Years Sample
0-4 3.2%
5-8 1.0

9-11 6.1
12 32.8

13-16 43.2
17+ 13.8

N = 3008. Percentages reflect

highest attained level of education.

Table 4: Smoking Behavior by Exam

Exam Nonsmokers Light Smokers Heavy Smokers
≤ 1 Pack/Day > 1 Pack/Day

1 59.0% 26.7% 14.3%
2 61.3 24.4 14.2
3 77.2 14.3 8.5
4 81.2 12.8 6.0
5 85.2 11.0 3.9
6 87.9 9.5 2.6
7 88.9 8.7 2.5
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Table 5: Chronic Health by Exam

Exam Chronic Condition Newly Chronically Ill
at Exam at Exam

1 0.2% 0.0%
2 4.0 3.8
3 7.0 3.4
4 9.6 3.1
5 12.2 3.9
6 16.0 5.0
7 20.3 4.8

Table 6: Smoking Summary Statistics (Conditional on Ever Smoking)

Mean (Median) S.D. Min Max
First Age Smoking 19.57 (18) 7.45 7 67
Total Years Smoking 24.78 (24) 14.07 1 68
Tenure Smoking (Years) 21.13 (19) 14.85 1 68
Last Age Smoking 44.76 (45) 12.84 13 76

(Conditional on Quitting)

3



Table 7: Observed Transitions

Behavior One Period Post Behavior Three Periods Post
Behavior One Not Light Heavy Not Light Heavy
Period Prior Smoking Smoking Smoking Smoking Smoking Smoking
Overall Transitions

Not Smoking 95.86% 2.93% 1.22% 91.72% 5.76% 2.51%
Light Smoking 9.21 89.29 1.51 17.35 79.81 2.84
Heavy Smoking 5.66 2.78 91.56 11.12 5.31 83.58

Transitions Around Health Exams
Not Smoking 96.38 3.20 0.42 97.00 2.55 0.45
Light Smoking 21.40 70.29 8.30 29.45 63.50 7.06
Heavy Smoking 14.50 16.47 69.03 20.62 16.48 62.90

Transitions Around Chronic Health Shocks
Not Smoking 98.94 0.89 0.18 97.18 2.59 0.24
Light Smoking 24.78 73.45 1.77 39.36 54.26 6.38
Heavy Smoking 21.43 8.33 70.24 39.71 13.24 47.06

Table 8: Health Marker Index Weights

Variable Weight
Systolic Blood Pressure 0.657
Diastolic Blood Pressure 0.637
Total Cholesterol 0.306
High-Density Lipoprotein (HDL) -0.177
Diabetes 0.193

Table 9: Smoking Stock Weights

Variable Weight
Experience 0.309
Duration 0.589
Cessation -0.517
Intensity 0.540
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Table 10: Variation in Exam Timing

Years Exam
Between Exams 2 3 4 5 6 7

1 0 0 4 0 0 103
2 0 27 63 36 49 718
3 0 141 1659 358 326 958
4 0 1951 1000 2242 2019 682
5 6 657 57 55 184 90
6 27 65 12 16 28 13
7 1500 8 1 2 7 1
8 1302 0 0 0 0 0
9 64 0 0 0 0 0

10 22 0 0 0 0 0
Total 2921 2849 2796 2709 2613 2565
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Table 11: Main Parameter Estimates

Description Chronic Condition Parameter Estimate ASE
Utility Parameters

Constants
No α00 26.039 2.261
Yes α01 1.884 0.345

Consumption - Light Smoking
Constant No α10 -6.191 0.110
Consumption*Smoking Stock No α20 0.001 0.000
Consumption*Health Marker Index No α30 0.000 0.000
Consumption*Age No α40 0.075 0.001
Consumption Yes α11 -5.675 0.160
Consumption*Smoking Stock Yes α21 2.326 0.018
Consumption*Health Marker Index Yes α31 -0.005 0.002
Consumption*Age Yes α41 0.002 0.001

Consumption - Heavy Smoking
Constant No α50 -18.810 0.036
Consumption*Smoking Stock No α60 1.686 0.013
Consumption*Health Marker Index No α70 -0.001 0.000
Consumption*Age No α80 0.000 0.000
Consumption Yes α51 0.011 0.004
Consumption*Smoking Stock Yes α61 2.665 0.018
Consumption*Health Marker Index Yes α71 0.001 0.000
Consumption*Age Yes α81 -0.102 0.004

Withdrawal
No α90 -5.675 0.160
Yes α91 -0.938 0.123

Smoking Stock
No α100 -0.025 0.008
Yes α101 1.488 0.053

Smoking Stock Squared
No α110 -0.001 0.001
Yes α111 -0.462 0.005

Learning Parameters
Mean Effect θ 0.002 0.000
Standard Deviation of θi σθ 0.061 0.002
Standard Deviation of ν σν 1.043 0.004

Additional Health Marker Index Parameters
Lagged Health Marker Index ζ 0.796 0.001
Age in Years φ1 0.006 0.000
Female φ2 -0.121 0.003
Education in Years φ3 -0.068 0.001
Married φ4 0.000 0.000
Constant φ5 1.027 0.013
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Table 12: Other Parameter Estimates

Description Parameter Estimate ASE
Smoking Stock Parameters

Depreciation Rate δ1 0.421 0.002
Investment, Light Smoking δ2 0.344 0.002
Investment, Heavy Smoking δ2 0.427 0.002
Standard Deviation of η ση 0.135 0.000

Chronic Health Parameters
Constant λ0 -12.040 0.074
Health Marker Index λ1 0.254 0.021
Health Marker Index Squared λ2 -0.014 0.001
1980s*Health Marker Index λ3 0.000 0.000
1990s*Health Marker Index λ4 0.000 0.000
Choice λ5 0.303 0.024
Choice*Health Marker Index λ6 -0.011 0.002
Age λ7 0.116 0.002
Education λ8 0.007 0.001
Gender λ9 0.012 0.004
Married λ10 -0.063 0.013

Mortality Parameters
Constant ω0 -8.805 0.010
Health Marker Index ω1 0.000 0.000
Health Marker Index Squared ω2 0.001 0.000
Chronic Health State ω3 4.075 0.091
Choice ω4 0.000 0.000
Choice*Health Marker Index ω5 0.007 0.001
Choice*Chronic Health State ω6 0.516 0.028
1980s* Chronic Health State ω7 -0.057 0.015
1990s* Chronic Health State ω8 -0.268 0.037
Age ω9 0.045 0.002
Gender ω10 -0.050 0.013
Education ω11 -0.101 0.006
Married ω12 -0.260 0.041

Heterogeneity Parameters
Utility: No Chronic Condition

Not Smoking ρu00 0.064 0.020
Light Smoking ρu01 2.678 0.145
Heavy Smoking ρu02 8.627 0.101

Utility: Chronic Condition
Not Smoking ρu10 2.052 0.121
Light Smoking ρu11 -0.106 0.033
Heavy Smoking ρu12 0.113 0.033

Stock ρA 0.653 0.002
Health Marker Index ρR 0.000 0.000
Chronic Health ρH 0.001 0.001
Mortality ρM 1.022 0.137

Mass Points and Probabilities
Mass Point 1 µ1 0.000 -
Mass Point 2 µ2 1.286 0.007
Mass Point 3 µ2 1.000 -
Coef. Weight on Mass Point 1 θ1 -2.625 0.778
Coef. Weight on Mass Point 2 θ2 -1.296 0.220

Miscellaneous Parameters
Discount Factor β 0.950 -
Log-Likelihood Value L(Θ) -31580.682

Mass points 1 and 3 are fixed at 0 and 1 respectively. Mass point 2 is estimated and
its location is ex p(1.286)

1+ex p(1.286) = 0.783. The corresponding probabilities of mass points 1
through 3 are 0.054, 0.204, and 0.742.
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Table 13: Model Fit: Choice Probabilities

Not Smoking Light Smoking Heavy Smoking
Exam Predicted Observed Predicted Observed Predicted Observed

Unconditional on Chronic Health State. # Person/Year Obs.=19,461
1 61.11 59.01 25.09 26.70 13.80 14.30
2 68.66 61.35 19.65 24.44 11.69 14.21
3 71.50 77.22 18.43 14.25 10.07 8.53
4 78.08 81.22 14.74 12.77 7.18 6.01
5 81.96 85.16 12.54 10.96 5.50 3.88
6 86.20 87.87 9.87 9.53 3.93 2.60
7 89.48 88.89 7.62 8.65 2.90 2.46

Mean 76.71 77.25 15.42 15.33 7.87 7.43

Conditional on No Chronic Condition, (Hi t = 0). # Person/Year Obs.=17,601
1 61.12 58.99 25.13 26.72 13.76 14.29
2 68.88 61.43 19.76 24.24 11.36 14.33
3 71.93 77.31 18.43 14.23 9.64 8.46
4 78.19 80.93 14.94 13.02 6.87 6.05
5 81.95 84.91 12.83 11.10 5.22 3.99
6 86.16 87.42 10.13 9.85 3.70 2.73
7 89.33 88.22 7.85 9.14 2.82 2.64

Mean 76.79 77.03 15.58 15.47 7.63 7.50

Conditional on Chronic Health, (Hi t = 1). # Person/Year Obs.=1,860
Mean 74.65 79.27 11.84 13.64 13.51 7.09

Table 14: Predicted Transitions

Behavior One Period Post Behavior Three Periods Post
Behavior One Not Light Heavy Not Light Heavy
Period Prior Smoking Smoking Smoking Smoking Smoking Smoking
Transitions Around Health Exams

Not Smoking 98.73% 1.22% 0.05% 97.75% 1.98% 0.27%
Light Smoking 11.76 63.81 24.43 21.75 54.01 24.24
Heavy Smoking 4.66 37.90 57.44 9.91 42.49 47.60

Transitions Around Chronic Health Shocks
Not Smoking 99.16 0.50 0.34 98.92 0.65 0.43
Light Smoking 32.78 44.09 23.13 55.86 27.55 16.59
Heavy Smoking 11.49 34.65 53.86 24.22 27.97 47.81

Transitions Around Health Marker Index Shocks: 75th Percentile
Not Smoking 99.04 0.93 0.03 98.18 1.65 0.17
Light Smoking 11.66 62.62 26.22 21.33 54.94 26.73
Heavy Smoking 4.22 33.12 62.66 8.87 37.91 53.22
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Table 15: Age of Chronic Health Onset and Death

Variable Mean Age of Mean Age of
Chronic Health Shock Death

Never Smokes 70.75 77.60
(10.72) (11.60)

Smokes ≤ 1 Pack/day from Age 18 68.91 73.32
(10.89) (11.19)

Smokes > 1 Pack/day from Age 18 66.79 69.58
(10.87) (10.94)

Smokes > 1 Pack/day from Age 18 and
quits at Age 30 70.77 77.58

(11.00) (11.85)
quits at Age 40 70.54 77.32

(11.33) (12.28)
quits at Age 50 69.98 76.60

(11.83) (11.02)
quits at Age 60 66.55 74.99

(10.91) (13.85)

Table 16: Posterior Variance by Exam: The Speed of Learning

Exam Mean Posterior Variance % Decrease Cummulative % Decrease
Initial Prior 0.0095 - -

1 0.0076 19.9% 19.9%
2 0.0069 8.7% 26.9%
3 0.0066 4.7% 30.3%
4 0.0064 3.6% 32.8%
5 0.0061 4.0% 35.5%
6 0.0059 3.8% 37.9%
7 0.0057 2.9% 39.7%
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