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1 Introduction

The new Keynesian Phillips curve (NKPC) is a forward-looking model of sticky prices,

according to which inflation is driven by the expected discount stream of marginal costs. In

its purely forward-looking specification, the model is at odds with US data over the postwar

period, and it is typically replaced by a hybrid version, that includes also lagged inflation:

πt = λxt + γfEt (πt+1) + γbπt−1 + εt, (1)

where πt denotes inflation, xt is a measure of marginal costs, εt is an exogenous cost-push or

markup shock (which could be zero), and Et denotes expectations conditional on information

available at time t, see Woodford (2003) for details.

Equation (1) has been estimated in the literature using so-called limited- or full-information

methods. Limited-information or ‘single-equation’ methods do not require the specification

of a model for the forcing variable xt, and their results are therefore more general than those

derived using full-information methods. A prominent limited-information approach for the

estimation of the NKPC, popularized in a seminal paper by Gaĺı and Gertler (1999), is

based on replacing expectations of future inflation in equation (1) by their realization. The

resulting equation is estimated by the generalized method of moments (GMM), using prede-

termined variables as instruments. It is by now well-established that estimation of the NKPC

may be subject to weak instrument problems, see for example Kleibergen and Mavroeidis

(2009) and the references therein. Recently, a number of studies applied identification-robust

GMM-based tests to the NKPC, and reported very wide confidence intervals, see Dufour et.

al. (2006, 2008) and Kleibergen and Mavroeidis (2009).

In contrast, full-information methods specify a complete model for the dynamics of in-

flation and the forcing variable. Various full-information approaches have been used for the

estimation of the NKPC, which differ in terms of whether the model of the forcing variable

is structural or reduced-form, as well as in terms of econometric methodology, i.e., Minimum
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Distance (MD) or likelihood-based inference. One such approach used by Sbordone (2002,

2005) is MD estimation based on a reduced-form vector autoregressive model (VAR) for πt

and xt.
1 It is clear that this approach imposes more restrictions on the underlying data

generating process than limited-information GMM, so we expect it to make more efficient

use of the information in the data. Thus, in view of the aforementioned negative results

on the identification of the NKPC, reviewed in Kleibergen and Mavroeidis (2009), our main

objective in this paper is to investigate the extent to which imposing more restrictions on

the reduced form dynamics sharpens inference on the NKPC parameters. We do so using

the identification-robust methods for MD that were recently developed in a different setting

by Magnusson (2008). These are the MD versions of the identification-robust GMM tests

proposed by Stock and Wright (2000) and Kleibergen (2005). Even though the focus of the

present study is on the Phillips curve, our paper also provides a methodological contribution

towards the development of identification-robust methods for full-information inference in

dynamic stochastic general equilibrium (DSGE) models.2

Our analysis starts with a discussion of the identification-robust MD methods, and a

comparison with their limited-information GMM counterparts in the context of the NKPC.

We show that the difference in the two approaches essentially lies in the way they use past

data to proxy the expectations of future inflation. The difference is akin to the issue of itera-

tive versus direct multistep forecasting, which has been studied by the forecasting literature,

see e.g., Schorfheide (2005) and Marcellino, Stock, and Watson (2006). Iterative forecasting

corresponds to what the MD approach does, and it is more efficient, albeit less robust, than

the direct multistep forecasting, which corresponds to GMM. We report power curves that

show considerable power advantages of MD over GMM. These results are consistent with

our subsequent empirical findings.

1MD was also used by Christiano, Eichenbaum, and Evans (2005) based on a structural model of the
dynamics.

2A related study in this direction is the paper by Dufour et. al. (2008). This study differs from ours
in that it does not impose assumptions on the reduced-form dynamics directly, but rather it exploits the
correlation of the structural errors in a system of structural equations.
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Our empirical analysis is based on a microfounded version of the NKPC that was studied

by Sbordone (2005), according to which the so-called ‘semi-structural’ parameters λ, γf and

γb in equation (1) are functions of some deeper structural parameters that measure the

degree of price stickiness and the degree of indexation of prices to past inflation. Following

Sbordone (2005), we model the reduced-form dynamics of (πt, xt) by a VAR, and we use the

labor share as a proxy for marginal costs, in accordance with Gaĺı and Gertler (1999). We

estimate the model using quarterly data from the US economy over the period 1984 to 2008.

Our main finding is that exploiting the restrictions on the reduced-form dynamics im-

proves the identification of the structural parameters of the NKPC considerably: the MD

identification-robust confidence sets on the price rigidity and indexation parameters are

about half the size of their GMM counterparts. Specifically, we find evidence of partial

but not full indexation, so we can reject the pure forward-looking version of the NKPC,

as well as the model with full indexation, which was used in Christiano, Eichenbaum, and

Evans (2005). In terms of the price rigidity parameter, our confidence intervals are smaller

than their GMM counterparts, but they are still fairly wide. This adds further weight to

the view that the average duration of prices is hard to estimate accurately from aggregate

macroeconomic data.

The structure of the paper is as follows. Section 2 presents the version of the NKPC

model that we estimate and derives the identification-robust MD test statistics. Section 3

discusses the difference of the MD tests from their GMM counterparts. Section 4 reports

the empirical results, and section 5 offers some concluding remarks. Proofs are given in the

Appendix at the end.

2 Identification-robust MD tests for the NKPC

We shall consider here the structural parameterization of the NKPC derived from Calvo

(1983) pricing and indexation, as in Sbordone (2002, 2005) and Christiano, Eichenbaum,
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and Evans (2005). According to this specification, the parameters λ, γf and γb are functions

of the degree of price stickiness θ, which is the probability that a firm will be unable to

change its price in a given period, the indexation parameter %, which measures the degree of

indexation to past inflation, and the discount factor β. As explained in Woodford (2003), in

the special case β = 1, the coefficients γf and γb in equation (1) add to one. In this case, the

model is identical to that of Fuhrer and Moore (1995), and also has identical implications

to another popular version of the NKPC due to Gaĺı and Gertler (1999), according to which

there is no indexation, but a fraction of agents use a backward-looking rule of thumb to

set their prices. Thus, in our empirical analysis we set β equal to one.3 The model to be

estimated is given by the equation

πt =
(1− θ)2
θ (1 + %)

xt +
1

1 + %
Et (πt+1) +

%

1 + %
πt−1 + εt (2)

To evaluate the central predictions of this model, we follow the approach of Sbordone

(2005) which is based on the distance between the dynamics of inflation implied by the

structural model and the dynamics implied by a reduced-form VAR forecasting model. The

latter can be written in companion form as:

zt = A (ϕ) zt−1 + εt (3)

Let eπ, ex denote the unit vectors such that e′πzt = πt and e′xzt = xt. Letting k denote

the number of variables in the VAR and p the number of lags (order of the VAR), the

reduced form coefficient matrix A (ϕ) is of dimension kp× kp, and it contains k2p unknown

(reduced-form) parameters, denoted by ϕ.

Next, we need to link the reduced-form parameters ϕ to the structural parameters ϑ =

(θ, %)′ in the NKPC (2). We use the standard identifying assumption in the literature

3We note that the results are insensitive to alternative values for β near one. Moreover, Kleibergen and
Mavroeidis (2009) report evidence that γf +γb is very well identified and not significantly different from one.
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that Et−1εt = 0, see for example, Gaĺı and Gertler (1999) and Sbordone (2002).4 Taking

expectations with respect to information at t− 1 on both sides of equation (1) yields

Et−1πt =
(1− θ)2
θ (1 + %)

Et−1 (xt) +
1

1 + %
Et−1πt+1 +

%

1 + %
πt−1.

Substituting for Et−1πt+1 = e′πA (ϕ)2 zt−1, Et−1πt = e′πA (ϕ) zt−1, Et−1xt = e′xA (ϕ) zt−1 and

πt−1 = e′πzt−1 yields

{
e′π

[
I− 1

1 + %
A (ϕ)

]
− (1− θ)2
θ (1 + %)

e′x

}
A (ϕ)− %

1 + %
e′π = 0 (4)

where I denotes the identity matrix of dimension kp. The kp restrictions (4) will be used to

do inference on the structural parameters ϑ based on some estimator of the reduced-form

parameters, ϕ̂.

The restrictions (4) can be expressed using the distance function

g (ϕ, ϑ) = A (ϕ)′
{[

I − 1

1 + %
A (ϕ)′

]
eπ −

(1− θ)2
θ (1 + %)

ex

}
-

%

1 + %
eπ (5)

We shall also make use of the following Jacobian matrices:

Gϕ (ϕ, ϑ) ≡ ∂g (ϕ, ϑ)

∂ϕ′
, and Gϑ (ϕ, ϑ) ≡ ∂g (ϕ, ϑ)

∂ϑ′
. (6)

Let ϕ̂ denote a consistent and asymptotically normal estimator of the reduced-form pa-

rameters, with asymptotic variance matrix Vϕ, and let V̂ϕ be a consistent estimator of Vϕ.

By the Delta method, the asymptotic variance of g (ϕ̂, ϑ) is Gϕ (ϕ, ϑ)VϕGϕ (ϕ, ϑ)′ . Efficient

MD estimation is based on the criterion function

Q (ϑ) = g (ϕ̂, ϑ)′ V̂gg
(
ϑ̄
)−1

g (ϕ̂, ϑ) (7)

4This can be relaxed to allow for serial correlation in the cost push shock, e.g., Et−1εt = ρεεt−1, at the
cost of introducing additional unknown parameters.
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where V̂gg (ϑ) = Gϕ (ϕ̂, ϑ) V̂ϕGϕ (ϕ̂, ϑ)′. The value of the parameter ϑ̄ that appears in the

weight matrix V̂gg
(
ϑ̄
)−1

may be some preliminary (inefficient) estimator of ϑ, e.g., a MD

estimator using the identity weight matrix, in which case the procedure corresponds to

classical 2-step MD estimation, see Newey and McFadden (1994). However, ϑ̄ can also be

equal to ϑ, in which case the criterion function (7) corresponds to the so-called continuously

updated (CU) GMM criterion function of Hansen, Heaton, and Yaron (1996).

Standard inference is based on the assumption that the Jacobian matrix Gϑ (ϕ, ϑ), see

equation (6), is of full rank. Under this assumption, 2-step and CU-MD estimators are

asymptotically equivalent, and since the former is computationally simpler, it is the one

commonly used. In that case, the minimizer of the MD criterion function, ϑ̂ is asymptotically

normal, and the usual Wald statistics for hypotheses on ϑ are asymptotically χ2 distributed,

see Newey and McFadden (1994). However, when Gϑ (ϕ, ϑ) is nearly of reduced rank, these

conventional asymptotic approximations break down, and inference based on Wald tests can

be seriously misleading, see Stock et. al. (2002). Therefore, we consider here test statistics

whose distribution under the null hypothesis H0 : ϑ = ϑ0 is independent of the rank of the

Jacobian matrix Gϑ (ϕ, ϑ) , and as a result, inference based on these statistics is robust to

weak identification or weak instrument problems. The difference of these statistics to their

GMM counterparts will be highlighted in the next section.

The first test statistic we consider is the MD version of the statistic of Anderson and

Rubin (1949) which is given by the CU-MD objective function, equation (7) with ϑ̄ = ϑ,

scaled by the sample size:

MD-AR(ϑ0) = Tg (ϕ̂, ϑ0)
′ V̂gg (ϑ0)

−1 g (ϕ̂, ϑ0) . (8)

Like the original Anderson-Rubin statistic, ARMD can be interpreted as a test of the validity

of the restrictions implied by the model, see equation (4), at a given hypothesized value of

the parameters (θ0, %0) .
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The second statistic is a score statistic that is based on the derivative of the CU-MD

objective function. This statistic is the MD version of the K statistic proposed by Kleibergen

(2002, 2005). It can be shown that

1

2

∂Q(ϑ)

∂ϑ′
= g (ϕ̂, ϑ)′ V̂gg (ϑ)−1 D̂ (ϑ) (9)

where

D̂ (ϑ) =
[
∂g(ϕ̂,θ,%)

∂θ
− V̂θg(ϑ)V̂gg (ϑ)−1 g (ϕ̂, ϑ) ,

∂g(ϕ̂,θ,%)
∂%

− V̂%g(ϑ)V̂gg (ϑ)−1 g (ϕ̂, ϑ)
]
.

(10)

V̂θg(ϑ) = ∂Gϕ(ϕ̂,ϑ)

∂θ
V̂ϕGϕ (ϕ̂, ϑ)′ and V̂%g(ϑ) = ∂Gϕ(ϕ̂,ϑ)

∂%
V̂ϕGϕ (ϕ̂, ϑ)′. The matrix D̂ (ϑ) can be

thought of as an alternative estimator of the Jacobian Gϑ (ϕ, ϑ) , which is asymptotically

independent of g (ϕ̂, ϑ). The K statistic for testing the hypothesis H0 : ϑ = ϑ0 is given by

a quadratic form of the derivative of the CU-MD objective function (9) with respect to an

estimator of its variance, i.e.:

MD-K(ϑ0) = g(ϕ̂, ϑ0)
′V̂gg(ϑ0)

− 1
2P

V̂gg(ϑ0)
− 1

2 D̂(ϑ0)
V̂gg(ϑ0)

− 1
2 g(ϕ̂, ϑ0) (11)

where PX = X (X ′X)−1X ′ for any full rank matrix X.

Note that, like in the case of GMM, because the MD-K statistic depends on the derivative

of the objective function, tests based on it may suffer a spurious decline of power at inflection

points of the objective function, where the identifying restrictions are typically violated.

Thus, we shall follow the approach of Kleibergen (2005) and combine the MD-K statistic

with a statistic that tests the validity of the overidentifying restrictions under H0:

MD-J (ϑ0) = MD-AR (ϑ0)−MD-K (ϑ0) .

The joint test will be referred to as MD-KJ test, and it will reject the null hypothesis at the

α% significance level whenever the hypothesis is rejected either by an α1% level MD-K test
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or an α2% MD-J test, where α1 + α2 = α. In our empirical analysis below, we use α1 = .8α

and α2 = .2α.

The following result gives the asymptotic distribution of these statistics under the null

hypothesis H0 : ϑ = ϑ0.

Proposition 1 Assume that
√
T (ϕ̂− ϕ)

d→ N (0, Vϕ), V̂ϕ
p→ Vϕ and the matrix Gϕ (ϕ, ϑ0)

VϕGϕ (ϕ, ϑ0)
′ is of full rank kg = kp..Then

MD-AR(ϑ0)
d→ χ2 (kg)

MD-K(ϑ0)
d→ χ2 (2)

MD-J (ϑ0)
d→ χ2 (kg − 2)

(12)

where “
d→” and “

p→” indicate convergence in distribution and in probability, respectively,

and χ2 (κ) indicates a chi square distribution with κ degrees of freedom.

The proof of the proposition is given in the Appendix. Note that the assumptions we

use are strictly weaker than the assumptions used to establish that classical MD t statistics

are asymptotically normal, because the latter require in addition the identification condition

that the Jacobian matrix Gϑ (ϕ, ϑ) should be of full rank, see Newey and McFadden (1994).

The assumptions in Proposition 1 do rule out some interesting cases, such as unit roots in the

VAR, but this limitation applies also to the non-robust methods, see Moon and Schorfheide

(2002). The development of methods that are robust both to weak instruments as well as

near unit roots in the VAR coefficients is a topic for future research.

Identification-robust (1− α) level confidence regions for the parameters (θ, %) can be

obtained by inverting the MD-AR and MD-KJ tests, i.e., by collecting all the values of

(θ0, %0) that are not rejected by the tests at the α level of significance.
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3 Comparison with GMM

For clarity, we discuss a simple special case of the NKPC with only one parameter:

πt = Etπt+1 + λxt + εt. (13)

The reduced-form model for (πt, xt) is given by:



πt

xt


 =



ϕ1

ϕ2


xt−1 +



ηt

vt


 . (14)

In this setting, the only relevant instrument is xt−1, so the model is just-identified.

The distance function (5) is given by

g (ϕ̂, λ) = ϕ̂1 (1− ϕ̂2)− λϕ̂2

where ϕ̂ is the OLS estimator of ϕ. For GMM, we use the moment condition E [ft (λ)] = 0,

where ft (λ) = (πt − πt+1 − λxt)xt−1, with corresponding sample moments:

fT (λ) =
1

T

T∑

t=1

ft (λ) .

The GMM-based Anderson Rubin statistic for testing the null hypothesis H0 : λ = λ0, is:

GMM-AR (λ0) = T fT (λ0)
′ V̂ff (λ0)

−1 fT (λ0)

where V̂ff (λ0) is an estimator of the asymptotic variance of
√
TfT (λ0). Because ft (λ) is seri-

ally correlated, V̂ff (λ0) must be a heteroskedasticity and autocorrelation consistent (HAC)

estimator. This is different from MD, where it suffices to use only a heteroskedasticity-

consistent estimator of the variance of the reduced-form parameters, in view of the as-
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sumption that the proposed reduced-form VAR model represents the dynamics of (πt, xt)

adequately. Though this difference between MD and GMM is of no consequence asymptot-

ically, it could be important in finite samples, as HAC estimators are known to cause size

distortions in finite samples, see, e.g., Sun, Phillips, and Jin (2008).

The main difference that we wish to emphasize is in the way in which the above two

approaches make use of the identifying restriction Et−1εt = 0. Specifically, the difference

arises due to the presence of the forward-looking term Et−1πt+1: GMM proxies Et−1πt+1

by projecting πt+1 directly on the instrument xt−1, while MD uses the iterative expectation

based on the reduced-form model (14), namely Et−1πt+1 = ϕ1ϕ2xt−1. This makes it clear

that GMM is more general, since the direct projection of πt+1 on the instruments will remain

valid (albeit inefficient) when the reduced-form model is misspecified, while the MD iterative

forecast will be biased when the reduced-form model is misspecified. The distinction is akin to

the issue of direct versus iterative multistep forecasts that has been studied in the forecasting

literature, see Marcellino, Stock, and Watson (2006). Iterative forecasts are more efficient,

but direct forecasts are more robust to misspecification of the forecasting model.

From the above discussion, we expect that when the additional structure imposed by

the MD approach is correct, the resulting estimates of Et−1πt+1 will be more accurate, and

this will lead to more efficient inference on the structural parameter λ. To get a sense of

the extent of efficiency gains one might expect, we report the power curves for the MD

and GMM tests of the hypothesis H0 : λ = λ0 in equation (13). The power curves are

computed by simulation based on the reduced form model given by equation (14), where

ηt = εt + (λ+ ϕ1) vt, and εt, vt are drawn from a zero-mean bivariate Normal distribution

with unit variances and correlation ρεv = .2.

The strength of identification of λ can be measured by the concentration parameter µ2,

see Stock, Wright, and Yogo (2002) for details. The interpretation of µ2 is most easily given

in terms of the so-called first-stage F statistic that tests the rank condition for identification,

ϕ2 6= 0 in this case. Under the null hypothesis of no identification, ϕ2 = 0, the expected value
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of the first-stage F statistic is equal to one, while under the alternative it is greater than one

and it is approximately equal to E (F )− 1. In the present example, µ2 = Tϕ2
2/ (1− ϕ2

2) , so

the strength of identification depends only on ϕ2.

We use a sample size of 200 observations and we consider two different values for the

concentration parameter: µ2 = 4 and µ2 = 100, corresponding to weak and strong identifica-

tion, respectively. The empirical moments for GMM are ft (λ) = Z ′tεt, with Zt = [xt−1, πt−1]

and Zt = [xt−1, πt−1, xt−2, πt−2]. This corresponds to a VAR(1) and VAR(2) reduced-form

models for MD. For the GMM test, we use the Newey and West (1987) estimator for the

variance while the MD tests are based on the OLS estimator for the reduced-form VAR

coefficients and the White (1980) estimator of their variance. The results are reported in

Figure 1.

We see that in both cases of weak and strong instruments, the MD-AR and MD-KJ

tests are substantially more powerful than their GMM counterparts. When the degree of

overidentification is one, the MD-AR test is almost as powerful as the MD-KJ test, as

expected, and the difference increases as the degree of overidentifcation gets higher. Also,

the MD tests based on a VAR(1) reduced-form are more powerful than those based on a

VAR(2), since the former exploit the additional restriction that the second order lags are

irrelevant, which is consistent with the DGP (14). So, the power of the tests is increasing in

the number of correctly specified restrictions.

4 Empirical results

We use quarterly data on inflation and the labor share over the period 1984 to 2008. Inflation

is calculated from the quarterly GDP deflator, while the labor share is obtained from the

Bureau of Labor Statistics and transformed according to procedure used in Sbordone (2002)

that was also used by Gaĺı and Gertler (1999).

We focus on the post-1983 sample so as to avoid issues of instability in the dynamics of
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Figure 1: Rejection probability using 5% significant level for testing H0 : λ = 0.5 against
H1 : λ 6= 0.5, and ρεv = 0.2. The sample size is 200 and the number of Monte Carlo
replications is 10,000.
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inflation and the labor share induced by, amongst other things, changes in monetary policy

in the late 1970s and early 1980s. This is in line with the recent literature, see e.g., Krause,

Lopez-Salido, and Lubik (2008) and is also further motivated by the stability tests reported

in Kleibergen and Mavroeidis (2009), which indicate instabilities before 1984.

Confidence sets for the price stickiness and indexation parameters (θ, %) are computed

by grid search within the parameter space θ, % ∈ [0, 1] . Figures 2 and 3 report 95% and 90%

level confidence sets based on inverting the AR tests and the KJ combination tests defined

in section 2 and contrast them with their GMM counterparts. The MD tests are based on

a VAR(3) for inflation and the labor share, and GMM accordingly uses three lags of both

of these variables as instruments, following Sbordone (2005) and Kleibergen and Mavroeidis

(2009).5 The efficient weight matrices for MD and GMM are based on the White (1980) and

Newey and West (1987) estimators, respectively, as discussed in section 3.
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Figure 2: MD-AR and GMM-AR confidence sets for the parameters (θ, %) of the NKPC. The
dark and light gray areas are, respectively, the 90% and 95% confidence sets. The sample is
1984q1 - 2008q3

The following conclusions emerge from these pictures. On the methodological side, we

5The results reported using the MD approach is not sensitive to the order of the VAR lag.
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Figure 3: MD-KJ and GMM-KJ confidence sets for the parameters (θ, %) of the NKPC. The
dark and light gray areas are, respectively, the 90% and 95% confidence sets. The sample is
1984q1 - 2008q3

see that the confidence sets based on MD-AR test is less than half the size of their GMM

counterpart, and a similar difference appears for the KJ sets. Thus, there are substantial

power gains that arise from imposing the full-information restrictions, which are consistent

with the simulations reported in section 3.

On the empirical side, we can infer from both the MD-AR and MD-KJ 90% sets that

the indexation parameter lies roughly between 0.3 and 0.6. This indicates that indexation is

significant, thus rejecting the pure forward-looking version of the NKPC, but that it is also

less than 100%, as in the model of Christiano, Eichenbaum, and Evans (2005). With regards

to the parameter θ that measures the degree of price stickiness, we also find that it is more

precisely estimated by MD than by limited-information GMM, with the confidence intervals

spanning the region 4/5 to 1. However, in terms of the average duration of prices, i.e., the

average time over which prices remain fixed, which is given by 1/ (1− θ) , we see that the

confidence sets remain unbounded from above, as in the GMM case. One implication of the

fact that θ = 1 is in the confidence set is that the slope of the NKPC is not significantly
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different from zero. This is also found in the limited-information studies cited above, and

could be interpreted either as evidence that the labor share is not the relevant variable that

drives inflation, or as evidence that the average duration of prices cannot be well-identified

by aggregate macroeconomic data.

5 Conclusion

This paper was motivated by the findings in the literature that the new Keynesian Phillips

curve is not well-identified. This finding was based on the use of limited-information meth-

ods, which make minimal assumptions about the dynamics of the labor share. We asked

whether imposing the assumption that the dynamics of inflation and the labor share can be

represented by a finite-order VAR model improves the identification of the NKPC parame-

ters. We proposed two different methods for answering this question. These are based on

the Minimum Distance approach used by Sbordone (2002, 2005) for the NKPC, but they do

not require any assumption about identification, and therefore results derived from them are

reliable even when identification fails. These methods are adaptations of the tests developed

for GMM by Stock and Wright (2000) and Kleibergen (2005), which were recently developed

in the context of limited dependent variable models by Magnusson (2008).

We found that the full-information approach improves significantly the identification of

at least one of the two key structural parameters of the NKPC. Specifically, we find evidence

of partial but not full indexation of prices to past inflation. Sharper inference relative

to limited-information methods is obtained also for the parameter governing the average

duration of prices, but the confidence intervals on this parameter remain unbounded from

above, indicating that it remains weakly identified.

The results of this paper also suggest there are substantial efficiency gains in estimating

forward-looking models by full- versus limited-information methods when the possibility of

weak identification is taken into account. The methodology used here can be extended
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to estimate multiple-equation models, such as the dynamic stochastic general equilibrium

(DSGE) model of Christiano, Eichenbaum, and Evans (2005). This is an important topic

for future research, as DSGE models are currently estimated using procedures that are not

robust to possible identification failure.

A Appendix

Proof of proposition 1 The asymptotic distribution of MD-AR(ϑ0) follows by applying

the Delta method. For the distribution of the MD-K and MD-J statistics, it suffices to show

that the matrix D̂ (ϑ) defined in equation (10) is asymptotically independent of g (ϕ̂, ϑ) .

First, note that the kp × kp matrix A (ϕ) in the reduced-form VAR (3) can be written as

A (ϕ) = BΦ+C where B = (Ik, 0, . . . , 0)′ is kp×k matrix, Φ = (Φ1, . . . ,Φp) is k×kp matrix

of the VAR(p) coefficients, and C = (0, 0; Ikp−1, 0) is kp × kp and ϕ = vec(Φ). So A (ϕ) is

linear in ϕ, and the distance function (5) is differentiable and its Jacobian w.r.t. ϕ is given

by:

Gϕ (ϕ, ϑ) = Ikp⊗
(
eπ −

(1− θ)2
θ (1 + %)

ex −
1

1 + %
A (ϕ) eπ

)′
B − 1

1 + %

[
A (ϕ)′ ⊗ e′πB

]
..

Clearly, ∂Gϕ(ϕ̂,ϑ)

∂θ
and ∂Gϕ(ϕ̂,ϑ)

∂%
exist and are linear in ϕ̂. Hence, by a first-order Taylor expan-

sion around ϕ we obtain: ξ̂g ≡
√
Tg (ϕ̂, ϑ) = Gϕ (ϕ, ϑ) ξϕ+op (1), ξ̂θ ≡

√
T
[
∂g(ϕ̂,ϑ)
∂θ
− ∂g(ϕ,ϑ)

∂θ

]

= ∂Gϕ(ϕ,ϑ)

∂θ
ξϕ + op (1) and ξ̂% ≡

√
T
[
∂g(ϕ̂,ϑ)
∂%
− ∂g(ϕ,ϑ)

∂%

]
= ∂Gϕ(ϕ,ϑ)

∂%
ξϕ + op (1) , where ξϕ ∼

N (0, Vϕ) . Thus,

(
ξ̂g

...ξ̂θ
...ξ̂%

)
d→
(
ξg

...ξθ
...ξ%

)
, where ξg, ξθ and ξ% are kp-dimensional jointly nor-

mally distributed random vectors with covariances E
(
ξθξ
′
g

)
≡ Vθg(ϑ) = ∂Gϕ(ϕ,ϑ)

∂θ
VϕGϕ (ϕ, ϑ)′

and E
(
ξ%ξ
′
g

)
≡ V%g(ϑ) = ∂Gϕ(ϕ,ϑ)

∂%
VϕGϕ (ϕ, ϑ)′ . V̂θg (ϑ) and V̂%g (ϑ), defined below equation

10, are consistent for V%g(ϑ) and V%g(ϑ), respectively, by Slutsky’s theorem, since V%g(ϑ) and

V%g(ϑ) are continuous in ϕ.

Let the kp× 2 matrix D̂ (ϑ) defined in the text be written as D̂ (ϑ) =
[
D̂θ (ϑ) , D̂% (ϑ)

]
.
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Under strong identification, D̂ (ϑ)
p→ Gϑ (ϕ, ϑ) has full rank. So, D̂ (ϑ) is trivially inde-

pendent of g (ϕ̂, ϑ) . Under weak identification, we can use the nesting Gϑ (ϕ, ϑ) = T−1/2D,

where D =

[
Dθ

...D%

]
is a nonrandom matrix. This implies that

√
TD̂θ (ϑ) = ξθ.g + op (1) ,

where ξθ.g =ξθ − Vθg(ϑ)Vgg (ϑ)−1 ξg + Dθ, and ξθ.g is independent of ξg, and similarly for

D̂% (ϑ) . Thus,
√
TD̂ (ϑ) is asymptotically independent of

√
Tg (ϕ̂, ϑ) . Hence, in both cases,

[
D̂ (ϑ)′ V̂gg (ϑ)−1 D̂ (ϑ)

]−1/2
D̂ (ϑ)′ V̂gg (ϑ)−1

√
Tg (ϕ̂, ϑ) is approximately normal with iden-

tity variance matrix. The asymptotic distribution of MD-K and MD-J follows by the con-

tinuous mapping theorem.
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