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1 Introduction

We analyze the effects of introducing threshold uncertainty, à la Nitzan and Romano (1990), into the private-

values subscription game for provision of a discrete public good. A discrete (sometimes also called a binary

or threshold) public good is either provided or not—quantity is not otherwise variable. The subscription

game is a voluntary provision mechanism for such goods: Individuals privately contribute money; if total

contributions reach a cost threshold, that is, if they suffice to fund the good, then provision occurs. Otherwise,

contributions are refunded. The subscription game, along with the closely related contribution game (where

contributions are not refunded), has been used extensively to describe situations including fund drives for

public radio, contributions to neighborhood security programs, and capital campaigns for new university

buildings. Beyond such standard examples of private provision of public goods, insights from the study of

the private provision of a discrete public good have proven useful in the analysis of many issues, including

bargaining (e.g. Mailath and Postlewaite, 1990) and common agency (e.g. Martimort and Moreira, 2007).

The full-information subscription game is well-understood (see Palfrey and Rosenthal, 1984, and Admati

and Perry, 1991). In contrast, situations in which agents’ values are private information have proven more

difficult to analyze, especially when a mechanism designer with commitment power does not exist. Indeed,

as Martimort and Moreira (2007) write, “... the provision of public goods under asymmetric information has

mostly been viewed as a mechanism design problem under the aegis of an uninformed mediator having a full

commitment ability” (p. 1). But, as they point out, “... in much real-world settings, centralized mechanisms

and uninformed mediators with a strong ability to commit to those mechanisms might not be available”

(p. 2).1

Our paper belongs to the strand of the literature assuming that either such a mediator does not exist, or,

if one does, then it has no commitment power. Focusing in particular on the known-threshold subscription

game with private values and continuous contribution strategies, this literature includes Alboth et al. (2001),

Menezes et al. (2001), Laussel and Palfrey (2003), and Barbieri and Malueg (2008), along with Martimort

and Moreira (2007). While these papers provide interesting insights, technical issues have limited the scope

of their analysis in important ways:

1. Existence and characterization results are limited to the case of two players having independently and

identically distributed values.

2. Description of equilibria often requires further assumptions about specific functional forms for the

distribution of players’ values.

1They provide examples including health, environment, global warming, terrorism, multilateral foreign aid, and lobbying.
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3. A pervasive non-uniqueness of equilibria hinders comparative statics analysis and muddles efficiency

considerations.

The main difference between our model and the previous literature is that we do not consider a fixed

threshold. Rather, we assume players are unsure about the exact cost of provision. Uncertainty in the

threshold cost appears in Nitzan and Romano (1990) and McBride (2006). Both papers, in contrast to ours,

assume players’ values are common knowledge. Nitzan and Romano (1990) argue that uncertainty in the

threshold cost may be a better assumption to capture real-world situations. We find that, beyond being more

realistic for many actual economic situations, a theoretical upshot of the threshold uncertainty assumption

turns out to be a large gain in the tractability of the subscription game equilibria.

Our first contribution is to overcome the three limitations in the literature outlined above. For the

two-player case, we derive existence, uniqueness, and characterization of equilibria only assuming standard

restrictions on the form of the threshold uncertainty, while allowing for asymmetry in players’ values. For

a uniformly distributed threshold, these results extend to any number of contributors. In addition, our

characterization is very simple and equilibrium is tractable. One of the most interesting results of Nitzan

and Romano (1990) is that threshold uncertainty qualitatively alters the properties of full-information sub-

scription game equilibria, especially with regards to efficiency. Our first contribution shows that, for private

value environments, this qualitative difference is larger in scope and sharper.

Our second contribution is more applied. Tractability and uniqueness of equilibrium make our environ-

ment useful for understanding design features of the subscription game. For example, it has been suggested

that, compared to binary contribution possibilities (as in Palfrey and Rosenthal, 1984, for example), allowing

for continuous contribution choices may yield greater contributions, and hence greater likelihood of provision.

We develop an example showing that the equilibrium with continuous strategies yields contributions at least

as large as when contributors are restricted to contribute either 0 or b, say; but for a carefully chosen value

of b, the discrete-contribution model has the same expected contributions and probability of provision.

We then show how changes in both intensity and dispersion of one player’s values affect the contribution

behavior of all other players and we determine the overall effect on total contributions. First, we show that

if a player’s values increase, in the sense of first-order stochastic dominance, then that player’s contributions

increase and the others’ decrease—but overall expected contributions increase and so, too, does the proba-

bility of provision. Second, if only one player’s distribution of values becomes more uncertain, we establish

not only that total contributions increase, but that the increase is entirely due to the player in question

contributing more, while everyone else contributes less. Correspondingly, the payoff of the “more uncertain”

player decreases, while the payoff of every other player increases. We relate these results to the empirical
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literature on lobbying surveyed in Potters and Sloof (1996) and to the papers analyzing advantages and

disadvantages of heterogeneity and fragmentation in cooperative endeavors, a literature surveyed in Alesina

and La Ferrara (2005). Moreover, our results complement McBride’s (2006). While McBride (2006) focuses

on the effects of changing the distribution of the threshold cost, we focus on the effects of changing the

distributions of players’ values. One of McBride’s most interesting results is that increased uncertainty in

the distribution of the threshold may increase equilibrium contributions,2 thus contradicting the usual in-

tuition that inefficiency worsens as the uncertainty increases. Again, in our private-information setting, the

results are sharper and richer: increased uncertainty in any agent’s value will increases total equilibrium

contributions, and, under symmetry, expected welfare unequivocally improves.

Our third and final contribution is to examine the efficiency properties of equilibrium in relation to

the extant results for the subscription game with known threshold. In particular, Laussel and Palfrey

(2003) show the subscription game may be interim incentive efficient, although they establish this only for

a uniform distribution of values and for a range of cost parameters. Moreover, inefficient equilibria always

exist. Martimort and Moreira (2007) confirm these efficiency results and extend them to distributions with

linear hazard rate, but add “Perturbing even slightly the model and considering distributions which no longer

have linear hazard rates makes checking (36) [the analytical condition for efficiency] a complex numerical

exercise. We conjecture that, beyond those cutting-edge cases, interim efficiency never holds” (p. 17). Such

mixed results and difficulties do not arise in our model: we show, when the threshold is uniformly distributed,

that equilibrium is interim incentive inefficient for all distributions of values and any number of players.

The rest of the paper is organized as follows. Section 2 describes the model, presents a general exis-

tence result, and proves uniqueness of equilibrium for the two-player case. Section 3 considers the case of a

uniformly distributed threshold and characterizes the unique equilibrium for any number of players. Com-

parative statics with respect to changes in players’ values are also derived. Section 4 analyzes the efficiency

properties of equilibrium, and Section 5 concludes.

2 The subscription game with threshold uncertainty

We consider the problem of n players who simultaneously contribute any positive amount to the funding of

a binary public good. Player i’s value for the good is vi, i = 1, ..., n. Players’ values vi are independently

distributed random variables with cumulative distribution functions (cdf) Fi, which have supports [vi, v̄i],

where 0 ≤ vi < v̄i <∞, i = 1, ..., n. A player’s realized value is known only to that player. We suppose Fi is

absolutely continuous, with density function fi. The cost of the public good is c, distributed with absolutely

2McBride assumes players’ contribution choice is binary—individuals contribute either c or nothing.
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continuous cdf H having density h on [c, c̄], where 0 ≤ c <
∑
v̄i ≤ c̄ (without index, the summation

∑
is

over the entire player set i = 1, . . . , n).

In the terminology of Admati and Perry (1991), we consider the subscription game: players’ contributions

are refunded if they are insufficient to cover c. If the good is provided, then the payoff to player i is

vi − (player i’s contribution). If the good is not provided, then the payoff to player i is 0. Therefore, the

expected utility of agent i with value vi contributing x is

Ui(x|vi) ≡ (vi − x) Pr


x+

∑

j 6=i

sj(vj) ≥ c


 , (1)

where sj denotes agent j’s strategy, for j = 1, ..., n. For any vector v = (v1, . . . , vn) we denote by v−i the

vector (v1, . . . , vi−1, vi+1, . . . , vn) and denote its joint distribution by F−i. We similarly define v−i and v̄−i.

Now Ui in (1) can be expressed as

Ui(x|vi) =

∫ v̄−i

v−i

(vi − x)H


x+

∑

j 6=i

sj(vj)


 dF−i(v−i). (2)

Corollary 2.1 in Athey (2001) yields the following existence result.

Proposition 1 (Existence of a pure-strategy equilibrium in increasing strategies). Suppose the densities fi,

i = 1, . . . , n, are bounded. Then for any continuous distribution of the cost H, there exists a pure-strategy

equilibrium in increasing strategies.

The proof of Proposition 1, a verification of the conditions of Athey’s corollary, is given in the Appendix.

We next provide conditions under which the equilibrium in the subscription game is unique. To do this

we assume c = 0. This assumption implies that any contribution larger than vi is strictly dominated by a

contribution of vi, so without loss of generality we restrict attention to contributions in [0, v̄i] for any player i.

Now, if the threshold distribution H is concave, then Ui in (2) is strictly quasi-concave in x, because of the

assumption c̄ ≥ ∑ v̄i (see below). Standard results then imply uniqueness of the optimal contribution for

each type, given any profile of contributions for the other players. In particular, the derivative of Ui with

respect to x is

∂Ui(x | vi)
∂x

= (vi − x)

∫ v̄−i

v−i

h


x+

∑

j 6=i

sj(vj)


 dF−i(v−i)−

∫ v̄−i

v−i

H


x+

∑

j 6=i

sj(vj)


 dF−i(v−i)

=



∫ v̄−i

v−i

h


x+

∑

j 6=i

sj(vj)


 dF−i(v−i)


×


vi − x− ri


x,

∑

j 6=i

sj




 , (3)
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where ri is defined as the ratio

ri


x,

∑

j 6=i

sj


 ≡

∫ v̄−i

v−i
H
(
x+

∑
j 6=i sj(vj)

)
dF−i(v−i)

∫ v̄−i

v−i
h
(
x+

∑
j 6=i sj(vj)

)
dF−i(v−i)

. (4)

Note that ri is well-defined because the strict dominance argument above implies the denominator is non-

zero. Moreover, when H is concave, ri is strictly increasing in each of its arguments, so by (3) Ui is indeed

quasiconcave in x. The first-order conditions imply that if x∗ is the best response of agent i with type vi,

then x∗ must solve the following equation in x,

x = max



vi − ri


x,

∑

j 6=i

sj


, 0



 . (5)

The determination of the unique optimal (positive) contribution level, using equation (5), is depicted in

Figure 1.

45◦ line

x∗

vi − ri
(
x∗,
∑

j 6=i sj

)

vi − ri
(
x,
∑

j 6=i sj

)

0
x

Figure 1: Determining the best response of player i with value vi

Beyond providing a graphical proof of the uniqueness of each type’s best-response contribution level,

Figure 1 also shows why once a player’s contribution is positive, it is strictly increasing for all larger values:

because increases in value simply shift upward the vi − ri curve, the intersection with the 45◦ line occurs at

a larger contribution level.
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Before proceeding, we note that equilibrium strategies are almost everywhere differentiable, and it is

convenient to establish the following fact. For any vi at which the equilibrium contribution function si

is strictly positive and differentiable, the derivative does not exceed 1
2 . To see this last point, note that

si(vi) > 0 implies si(v
′
i) > si(vi) > 0 for any v′i > vi, so, denoting si(v

′
i)− si(vi) with ∆s, we have

∆s = (v′i − vi)−


ri


si(v′i),

∑

j 6=i

sj


− ri


si(vi),

∑

j 6=i

sj




 (by (5))

≤ (v′i − vi)−
∫ v̄−i

v−i

[
H
(
si(v

′
i) +

∑
j 6=i sj(vj)

)
−H

(
si(vi) +

∑
j 6=i sj(vj)

)]
dF−i(v−i)

∫ v̄−i

v−i
h
(
si(v′i) +

∑
j 6=i sj(vj)

)
dF−i(v−i)

(by h decreasing)

≤ (v′i − vi)−∆s, (by concavity of H)

from which the desired result follows immediately. Therefore, the equilibrium contribution si(vi) of type vi

cannot exceed 1
2 (vi + vi).

We next establish that, when there are two players, equilibrium in the subscription game is unique. This

uniqueness stands in contrast to the subscription game with fixed threshold, where a continuum of equilibria

is the norm.

Proposition 2 (Uniqueness of equilibrium). Suppose H is a concave distribution with support [0, c̄]. Further-

more, assume c̄ ≥ v̄1 + v̄2 + max{v1, v2}. Then the two-player subscription game with threshold uncertainty

has a unique equilibrium.

Proof. With H concave, condition (5) must hold, so any equilibrium (s1, s2) must satisfy

s1(v1) = max {v1 − r1(s1(v1), s2), 0} (6)

and

s2(v2) = max {v2 − r2(s2(v2), s1), 0} . (7)

Equation (6) implicitly defines the operator T1(s2), where the value of T1(s2)(v1) is given by the solution

for x∗ of (5). Similarly, (7) defines an operator T2(s1), with T2(s1)(v2) also determined via (5). Therefore,

defining the operators O1(s1) ≡ T1(T2(s1)) and O2(s2) ≡ T2(T1(s2)), any equilibrium (s1, s2) must be such

that s1 is a fixed point of O1 and s2 is a fixed point of O2. By way of contradiction, suppose two equilibria

exist: (s1, s2) and (s̃1, s̃2). To show uniqueness of equilibrium, we proceed to show Oi satisfies

d (Oi(si), Oi(s̃i)) < d (si, s̃i) if d (si, s̃i) > 0, (8)
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where d(si, s̃i) ≡ supvi |si(vi)− s̃i(vi)|. We prove (8) for O1 only, because the proof for O2 is identical, and

for brevity, we indicate d (s1, s̃1) with d, which we assume strictly positive. The steps of our proof mirror

Blackwell’s (1965) sufficient conditions for a function to be a contraction mapping.3 We first prove that O1

satisfies the following limited form of “monotonicity”:

O1(s̃1 + d)(v1) ≥ O1(s1)(v1), ∀v1; (9)

we then show the following version of “discounting”:

O1(s̃1 + d)(v1) < O1(s̃1)(v1) + d, ∀v1. (10)

Condition (9) follows because the ratios ri, defined in (4) and used in O1, are strictly increasing in each

argument, due to the concavity of H. Therefore, each operator Ti is decreasing in its function argument,

so that O1, the application of T1 to T2(s1), is decreasing in T2(s1); and ultimately O1 is increasing in its

function argument s1. The formal verification of this argument appears in the following lemma, with proof

in the Appendix.

Lemma 1 (Monotonicity). O1(s̃1 + d)(v1) ≥ O1(s1)(v1), ∀v1.

We establish (10) using the following relationships: first

T2(s̃1 + d)(v2) > T2(s̃1)(v2)− d (11)

and then

T1(T2(s̃1 + d))(v1) < T1(T2(s̃1))(v1) + d. (12)

Condition (11) says that if for all values player 1 increases his contribution by d, then player 2’s best response

is to reduce his contributions by less than d; and (12) says that a further iteration of the best-response

operator results in player 1 increasing his contributions only by less than d. A relationship analogous to

(11) also holds for T1, from which (12) then follows straightforwardly. Therefore, the key intermediate step

in establishing monotonicity of O1 is to establish (11). Clearly (11) is satisfied if T2(s̃1)(v2) = 0, so it only

remains to consider the case of T2(s̃1)(v2) > 0, as depicted in Figure 2.

3The inequality in (8) requires that, when applied to two prospective equilibrium strategies, Oi is a contraction. The usual
contraction mapping condition requires that, for some β < 1, it is the case that d(Oi(s), Oi(s̃)) < β d(s, s̃) for any pair of
distinct functions s, s̃. This stricter bound is generally used to establish existence of a fixed point as well as uniqueness. We
do not need to establish existence of an equilibrium—at least one exists by Proposition 1.
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T2(s̃1)(v2)− d

T2(s̃1 + d)(v2) T2(s̃1)(v2)

45◦ line

v2 − r2(x, s̃1)

v2 − r2(x, s̃1 + d)

d

0
x

Figure 2: Intermediate step in establishing that the operator Oi exhibits “discounting”

Observe from (4) that r2(x, s̃1 + d) = r2(x+ d, s̃1), so that the curve labelled v2 − r2(x, s̃1 + d) is simply

a leftward translation of the original curve, labelled v2 − r2(x, s̃1), by the amount d. Because these curves

are downward sloping, it follows, as shown in Figure 2, that T2(s̃1)(v2)− d < T2(s̃1 + d)(v2), which is (11).

Equation (12) is demonstrated along similar lines. The proof of the following lemma establishes (11) and

(12), and thereby (10), in the Appendix.

Lemma 2 (Discounting). O1(s̃1 + d)(v1) < O1(s̃1)(v1) + d, ∀v1.

Following Blackwell (1965) we have, for the two equilibrium strategies s1 and s̃1,

O1(s1) ≤ O1(s̃1 + d(s1, s̃1)) < O1(s̃1) + d(s1, s̃1),

where the first inequality follows from monotonicity and the second from discounting; similarly,

O1(s̃1) ≤ O1(s1 + d(s1, s̃1)) < O1(s1) + d(s1, s̃1).

Combining these results yields (8). Because there are two distinct equilibria, (s1, s2) and (s̃1, s̃2), either

s1 6= s̃1 or s2 6= s̃2. If s1 6= s̃1, then

0 < d(s1, s̃1) = d(O1(s1), O1(s̃1)) < d(s1, s̃1);
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this contradiction shows it must be that s1 = s̃1. Similarly, it cannot be that s2 6= s̃2. Therefore, there

cannot exist two distinct equilibria. Hence, the equilibrium, whose existence is assured by Proposition 1,

must be unique.

As a technical remark, it is worth noting that the stronger assumption c̄ ≥ v̄1 + v̄2 + max{v1, v2} in

Proposition 2, rather than c̄ ≥ v̄1 + v̄2 as in the earlier part of this section, is only for ease of exposition.

It ensures that the denominator of ri in (4) remains non-zero even when, in the course of the proof, the

distance d is added to an equilibrium strategy. Proposition 2 can be proved under the weaker assumption

that c̄ ≥ v̄1 + v̄2 by expanding, as follows, the definition of the ratio ri in (4) when the denominator is zero:

set ri to any value larger than v̄i. At the cost of more cumbersome notation, all steps in the proof go through

essentially unchanged.

3 A uniformly distributed threshold

In this section we assume the threshold cost is uniformly distributed on [0, c̄]. With this assumption, the

subscription game with an uncertain threshold becomes simpler to analyze, and several interesting results

follow. Given H(c) = c/c̄, in (2) the probability that the good is provided is E
[
H(x+

∑
j 6=i sj(vj)) |x, vi

]
=

1

c̄
E
[
x+

∑
j 6=i sj(vj) |x, vi

]
, so the utility of agent i, (2), becomes

Ui(x|vi) =
1

c̄
(vi − x)(x+

∑

j 6=i

Kj) (13)

where Kj ≡ E[ sj(vj) ], for j = 1, ..., n; that is, Kj is the expected contribution of agent j. The comparison

of equations (2) and (13) immediately reveals the simplification that the uniform distribution assumption

yields. Without it, in general, an agent needs to forecast the whole distribution of all of his rivals’ strategies,

see (2). With a uniformly distributed threshold, an agent needs to forecast only the expected value of his

rivals’ strategies, see (13).

We now proceed to the characterization of equilibria. Since Ui in (13) is strictly concave in x, the first-

derivative ∂
∂xUi(x|vi) =

1

c̄

(
vi −

∑
j 6=iKj − 2x

)
, along with the non-negativity constraint on x, yields the

following “best-response” function for player i,

si(vi|
∑

j 6=i

Kj) = max



0,

1

2
(vi −

∑

j 6=i

Kj)



 . (14)

Therefore, using the definition of Ki above and (14), in equilibrium the following system of equations must

be satisfied by (K1, ...,Kn):

9



Ki = E


 si(vi|

∑

j 6=i

Kj)


, ∀i. (15)

For general concave threshold distributions with support [0, c̄], Proposition 2 established uniqueness of

equilibrium only for the case of two contributors. Additionally requiring this distribution to be uniform, we

next establish uniqueness of equilibrium for any number of players. The following lemma, whose proof is in

the Appendix, demonstrates that there exists at most one solution to the system of equations in (15).

Lemma 3 (Uniqueness). There exists at most one solution (K∗1 , ...,K
∗
n) to the system of equations (15).

Collecting the results of our previous analysis, we obtain the following.

Proposition 3 (Uniqueness and Characterization of Equilibrium). In the subscription game with threshold

uncertainty, there exists a unique equilibrium; the equilibrium strategy, s∗i , for agent i is si(vi|
∑

j 6=iK
∗
j ) as

given in (14) and (K∗1 , ...,K
∗
n) denotes the unique solution of (15). The ex ante equilibrium probability that

the good is provided equals
1

c̄

∑
K∗i .

Proof. Proposition 1 guarantees at least one equilibrium exists. The analysis above shows any equilibrium

must have strategies given by (14), for some set of numbers K1, . . . ,Kn. The system (14) implies (15), and

Lemma 3 implies that there is a unique solution to (15). Therefore, there is a unique profile of equilibrium

strategies.

Because c is uniformly distributed on [0, c̄], for any given vector of values v = (v1, . . . , vn), the probability

of provision isH(
∑
s∗i (vi)) =

1

c̄

∑
s∗i (vi). Therefore, the ex ante probability of provision is E[H(

∑
s∗i (vi)) ] =

1

c̄

∑
E[ s∗i (vi) ] =

1

c̄

∑
K∗i .

The following examples illustrate equilibrium in the subscription game with threshold uncertainty.

Example 1 (Values are uniformly distributed between 0 and 1).

Consider two players and suppose values are independently and uniformly distributed on [0, 1]. Then

both players use the same strategy and (15) reduces to

K =

∫ 1

K

1

2
(v −K) dv =

1

4
− K

2
+
K2

4
,

the solution to which is K∗ = 3 − 2
√

2 ≈ 0.17157. Therefore, the corresponding symmetric equilibrium

strategy is

s∗i (v) =





1

2
(vi − 3 + 2

√
2) if vi ≥ 3− 2

√
2

0 if vi < 3− 2
√

2.
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Ex post efficiency would require that the public good be provided if and only if v1 + v2 ≥ c. If, further, c is

uniformly distributed over [0, 2] and all random variables are independent, then the good would efficiently

be provided with probability 0.5. However, by Proposition 3 the subscription-game equilibrium provides the

good only with probability 2K∗/c̄ = 3 − 2
√

2 ≈ 0.17157, or in about 34% of the cases where it should be

provided.

As Example 1 clearly illustrates, and in sharp contrast with the known-threshold case,4 equilibrium is

unique and tractable, thus making our environment useful for understanding design features of the subscrip-

tion game. For instance, it has sometimes been suggested that allowing players to make contributions of

any amount, rather than simply one of a preselected set, can increase overall contributions and thereby the

likelihood of provision. Cadsby and Maynes (1999) provide an experiment testing allowing continuous or

“all-or-nothing” contribution possibilities and find that the continuous case yielded greater contributions.

Their finding that one particular specification of discrete contribution levels yields less than the continuous

possibilities case is interesting but hardly conclusive—perhaps other specifications of the binary possibilities

could do better. Our framework is ideal for formulating this comparison. We do this next.

Example 2 (The probability of provision: binary or continuous contribution possibilities).

We again suppose there are two players, values are independently and uniformly distributed on [0, 1], and

that cost is uniformly distributed over [0, c̄], where c̄ ≥ 2. From Proposition 3 and Example 1 we know that

each player’s expected contribution in the continuous-contribution case is K∗ = 3− 2
√

2.

Next suppose that players’ contributions are restricted to be either 0 or b, (we may assume b ≤ 1).

Equilibrium has players use a strategy given by

s(v) =





b if v ≥ v∗

0 if v < v∗,

for some critical value v∗ that depends on b. Player 1 with value v contributing 0 earns payoff

U(0 | v1) = Pr(v2 ≥ v∗) Pr(c ≤ b) v1 = (1− v∗)b
c̄
v1;

if instead player 1 contributes b, his payoff is

U(b | v1) = Pr(v2 < v∗) Pr(c ≤ b) (v1 − b) + Pr(v2 ≥ v∗) Pr(c ≤ 2b) (v1 − b)

=

(
v∗
b

c̄
+ (1− v∗)2b

c̄

)
(v1 − b).

4See, for example, Alboth et al. (2001) for a description of the case where agents’ values are uniformly distributed.
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The threshold value v∗ denotes the type indifferent between contributing 0 and b; solving U(0 | v) = U(b | v)

for v we obtain

v∗(b) =
2b

1 + b
.

Each player’s expected contribution is K(b) ≡ bPr(v ≥ v∗(b)) =
(

1−b
1+b

)
b. This expected contribution is

strictly quasiconcave in b, reaching its maximum at b∗ =
√

2− 1; the resulting expected contribution of each

player is

K(b∗) =
(2−

√
2)(
√

2− 1)√
2

= 3− 2
√

2,

which is precisely the same expected contribution as in the continuous-case model. Thus, the probability

of provision in the two settings is also identical. Note, though, for any choice of b other than b∗, the

binary-contribution model yields strictly lower contributions.

The next example shows our framework may be used to study how the equilibrium of the subscription

game varies as the distributions of players’ values change.

Example 3 (Asymmetric players with values related by stochastic dominance).

In this example players 1 and 2 are not symmetric. As in Example 1, we continue to assume that the

distribution of player 2’s value, F2, is uniform over [0, 1], but for player 1 we deviate from Example 1 in two

natural ways: we consider distributions that are related to the uniform distribution by either first-order or

second-order stochastic dominance. We continue to assume the support of player 1’s value is [0, 1], but in

the first instance it has cdf F̂1(v) = 1− (1− v)2 and in the second it has cdf F̃1(v) = 3v2 − 2v3. Letting F1

denote the uniform distribution over [0, 1] in Example 1, it is readily verified that F1 first-order stochastically

dominates F̂1 and F̃1 second-order stochastically dominates F1. Figure 3 depicts these cdfs.

Table 1: Expected equilibrium contributions when players’ values are distributed on [0, 1] with v2 being
uniformly distributed and v1 having the alternative distributions shown.

K∗1 K∗2 K∗1 +K∗2

F1(v) = v 0.17157 0.17157 0.34314

F̂1(v) = 1− (1− v)2 0.08195 0.21070 0.29265

F̃1(v) = 3v2 − 2v3 0.16533 0.17417 0.33950

Table 1 shows the resulting expected efforts of the two players for the respective pairs of distributions.5

Consider first the effect of moving from the pair (F1, F2) to (F̂1, F2), according to which player 1’s values

5Derivations of equilibrium calculations are available from the authors.
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are reduced in the sense of first-order stochastic dominance. We see that player 1’s expected contribution

falls and player 2’s increases. Indeed, the change from F1 to F̂1 results in a weak reduction in player 1’s

contribution strategy and a weak increase in player 2’s.6 This effect is very intuitive. When player 1’s

distribution of values is shifted leftward, player 2 recognizes that, even if player 1 were not to change his

contribution strategy, player 1’s expected contribution would fall, and this induces player 2 to increase his

contributions. This induced increase in player 2’s contributions then actually induces player 1 to reduce his

contribution strategy, reinforcing player 2’s need to increase his own contribution. In the new equilibrium,

player 1’s contribution strategy has decreased and player 2’s has increased.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

v

F̃1

F1

F̂1

0

Figure 3: Value cdfs in Example 3

Next consider the effect of moving from the pair (F1, F2) to (F̃1, F2), according to which player 1’s values

become less dispersed around the mean (F1 is a mean-preserving spread of F̃1). Again we see the change

from F1 to F̃1 results in a weak reduction in player 1’s contribution strategy and a weak increase in player 2’s.

Here, too, even if player 1 were not to change his equilibrium contribution strategy, his average contribution

would fall because his strategy is a convex function of his value and F̃1 second-order stochastically dominates

F1. Given this reduction in player 1’s expected contribution, player 2 is induced to increase his contributions,

and this in turn induces player 1 to reduce his own contribution strategy. The net result is that player 1’s

strategy is weakly reduced and player 2’s is weakly increased.

The relationships among contribution strategies in Example 3 hold in general, as we will show. Before

doing that, it is convenient to establish a general result on the crowding-out by exogenous contributions to

the public good.

6Player 1’s reduction is strict over the range of values where his contribution is strictly positive under F1 and player 2’s
increase is strict over the range where his contribution is strictly positive when player 1 has cdf F̂1.
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3.1 Crowding-out

We denote with KE the level of contributions that are exogenously provided by an external authority; and

we consider how the players’ contributions change as KE increases. It is immediate to replicate the steps

leading to Proposition 3 and obtain that in equilibrium, the system of equations (15) takes the form

∀i, 0 = Ki −
1

2

∫ v̄i

P
j 6=i Kj+KE


vi −

∑

j 6=i

Kj −KE


 fi(vi) dvi. (16)

The application of the implicit function theorem to (16) leads to the following proposition (the proof is in

the Appendix).

Proposition 4 (Crowding out). Define KN ≡∑Kj and suppose KE +
∑
v̄i < c̄. Then

a. dKi/dK
E < 0 for all i such that Ki > 0;

b. − n

n+ 1
<
dKN

dKE
< 0.

Beyond establishing, in part b, that crowding-out is only partial in our model, Proposition 4 allows an

interesting graphical analysis of the equilibrium system of equations (15), even when the number of players

is larger than 2. It is indeed possible to separate out player 1 from the aggregate of all other players, and

represent expected contributions on a Cartesian plane. Letting K−1 ≡
∑

j 6=1Kj , from (14) and (15), we

define the following “best-response” function for player 1,

K1 = R1(K−1) ≡ 1

2

∫ v̄1

K−1

(v −K−1)f1(v) dv, (17)

for given K−1. Observe that the function R1 is continuous, convex, and strictly decreasing, with slope less

than 1/2 in absolute value. Similarly, we can consider all equations in (14) and (15), except the one for

player 1, as defining a “best-response” function for all other players, given some exogenously fixed level for

K1. The sum of all solutions K2, ...,Kn then can be written as R−1(K1) and, in equilibrium K−1 = R−1(K1).

By Proposition 4, with K1 assuming the role of KE , we also see R−1 is strictly decreasing, with slope less

than (n− 1)/n < 1 in absolute value. The unique equilibrium occurs at the intersection of R1 and R−1, as

Figure 4 illustrates. This figure is useful in the analysis of perturbations of the distribution of values, which

we undertake next.

3.2 Stochastic dominance

We first consider distributions F1, F2, ..., Fn for players’ values, and denote the unique expected equilibrium

contributions from (15) as K∗1 ,K
∗
2 , ...,K

∗
n. We then consider the distributions F̂1, F2, ..., Fn, where F2, ..., Fn

14



•(K
∗
1 ,K

∗
−1)

R1

R−1

K−1

0 K1

Figure 4: Illustration of equilibrium

remain the same, but either F1 first-order stochastically dominates (FOSD) F̂1 or F̂1 second-order stochasti-

cally dominates (SOSD) F1. We denote the expected equilibrium contributions in this case as K̂∗1 , K̂
∗
2 , ..., K̂

∗
n.

We have the following results.

Proposition 5 (Stochastic dominance). Fix the distributions F2, ..., Fn. Consider two distributions for

agent 1’s values, F1 and F̂1. If either F1 first-order stochastically dominates F̂1 or F̂1 second-order stochas-

tically dominates F1, then

a. K̂∗1 ≤ K∗1 and K̂∗j ≥ K∗j , ∀j ≥ 2: Agent 1 contributes less on average and every other agent contributes

more on average when the distributions of values are (F̂1, F2, ..., Fn) than when they are (F1, F2, ..., Fn);

b.
∑
K̂∗i ≤

∑
K∗i : Total expected contributions are smaller when the distributions of values are (F̂1, F2, ..., Fn)

than when they are (F1, F2, ..., Fn);

c. The equilibrium payoff of each type of agent 1 is at least as great when the distributions of values are

(F̂1, F2, ..., Fn) as when they are (F1, F2, ..., Fn);

d. The equilibrium payoff of each type of agent j, with j ≥ 2, is no greater when the distributions of values

are (F̂1, F2, ..., Fn) than when they are (F1, F2, ..., Fn).

Proof. To establish part a, denote by R1(K−1 |F1) the function in (17) when player 1’s distribution of values

is F1 and denote by R1(K−1 | F̂1) the function in (17) when player 1’s distribution of values is F̂1. Recall
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that if F1 first-order stochastically dominates F̂1, then the expected value of any increasing function of v1 is

at least as large under F1 as under F̂1; recall too that if F̂1 second-order stochastically dominates F1, then

the expected value of any convex function of v1 is at least as large under F1 as under F̂1. Therefore,

R1(K−1 | F̂1) =
1

2

∫ v̄1

v1

max {0, v1 −K−1} dF̂1(v1) (by (17))

≤ 1

2

∫ v̄1

v1

max {0, v1 −K−1} dF1(v1)

= R1(K−1 |F1), (by (17))

where the inequality follows because, for any fixed K−1, max {0, v1 −K−1} is an increasing convex function

of v1 and we assumed that either F1 first-order stochastically dominates F̂1 or F̂1 second-order stochastically

dominates F1. Thus, changing player 1’s distribution from F1 to F̂1 (weakly) shifts player 1’s best-response

function leftward, as shown in Figure 5. Therefore, the equilibrium values of the expected contributions

(K1,K−1) for the profile (F̂1, F2, ...Fn) will be on the function R−1, to the northwest of the equilibrium

expected contributions for the profile (F1, F2, ...Fn). This reasoning establishes K̂∗1 ≤ K∗1 in part a, and it is

illustrated in Figure 5. The remainder of part a follows from Proposition 4.

(K∗1 ,K
∗
−1)

•

(K̂∗1 , K̂
∗
−1)

line with slope −1•

R1 calculated with F1

R1 calculated with F̂1

R−1

K−1

0 K1

Figure 5: F1 FOSD F̂1 or F̂1 SOSD F1

To establish part b, it is enough to consider Figure 5 again, remembering that the function R−1 is strictly

16



decreasing with slope less than 1 in absolute value (see Proposition 4). Therefore, the point (K̂∗1 , K̂
∗
−1) lies

below the line that connects all pairs (K1,K−1) summing to K∗1 +K∗−1.

To establish part c, denote the equilibrium strategies as s∗i when the distributions are (F1, F2, ..., Fn), and

as ŝ∗i when the distributions are (F̂1, F2, ..., Fn). Such equilibrium strategies are described in Proposition 3,

for (K∗1 ,K
∗
2 , ...,K

∗
n) and (K̂∗1 , K̂

∗
2 , ..., K̂

∗
n), respectively. We then have

U1(ŝ∗1(v1) | v1, K̂
∗
−1) ≥ U1(s∗1(v1) | v1, K̂

∗
−1) ≥ U1(s∗1(v1) | v1,K

∗
−1),

where the first inequality follows because ŝ∗1 is optimal against K̂∗−1, and the second inequality follows because

K̂∗−1 ≥ K∗−1 and the expression for U1 is increasing in the expected contribution of the other agents (see

(13)). Note that the first term in the chain of inequalities above is the equilibrium payoff for type v1 under

(F̂1, F2, ..., Fn), while the last term in the chain of inequalities is the equilibrium payoff of type v1 under

(F1, F2, ..., Fn), so we have established part c. To establish part d, we first note that, for any j ≥ 2, we have

∑
K∗i −

∑
K̂∗i ≥ 0 ≥ K∗j − K̂∗j , by parts a and b, so that

∑
K∗i −K∗j ≥

∑
K̂∗i − K̂∗j ;

proceeding as in part c, we obtain

Uj

(
s∗j (vj)

∣∣∣ vj ,
∑

K∗i −K∗j
)
≥ Uj

(
ŝ∗j (vj)

∣∣∣ vj ,
∑

K∗i −K∗j
)
≥ Uj

(
ŝ∗j (vj)

∣∣∣ vj ,
∑

K̂∗i − K̂∗j
)
,

thus establishing the desired inequalities.

Part a of Proposition 5 confirms the intuition in Example 3.7 Part b proves that, while the expected

contributions of the first agent and those of all other agents move in opposite directions, the sign of the effect

on overall contributions is determined by the sign of the change for the first agent’s contribution. This is

because of the imperfect crowding-out result in Proposition 4. It states that all other agents’ contributions

react in the opposite direction of a change in the expected contribution of agent 1, but not sufficiently to fully

offset it. The intuition for part c is simple: when moving from distributions (F1, F2, ..., Fn) to (F̂1, F2, ..., Fn),

all agents other than agent 1 are contributing more. Therefore, agent 1’s utility increases. The intutition

for part d is similar, once one establishes that any agent j different than 1 perceives that all other agents

7As the proof makes clear, what is needed for this result is convexity of equilibrium strategies. The uniform threshold
assumption yields piecewise-linear equilibrium strategies. Therefore, assuming a uniform threshold, while helpful, is not essential
for our result.
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contribute less, in aggregate. To see this last point, observe that, for j 6= 1,

∑

i 6=j

K̂∗i =
∑

K̂∗i − K̂∗j ≤
∑

K∗i −K∗j =
∑

i 6=j

K∗i ,

where the inequality follows from parts a and b of Proposition 5.

Proposition 5 has implications for adding another member to the group of participants. Consider Propo-

sition 5 where according to distribution F̂1 player 1 is sure to have value 0 while for distribution F player 1’s

value has a nondegenerate distribution. When player 1’s value is sure to be 0, he is effectively a nonparticipant

in the game. Because F1 first-order stochastically dominates F̂1, we have the following result.

Corollary 1 (Adding a participant). If a new potential contributor is added to the group, then the expected

contribution of each original member falls but total expected contributions increase. Moreover, each original

member of the new group, for each possible value, is at least as well off as without the additional member.

The comparisons in Proposition 5 consider changing the distribution of values for only a single player.

For symmetric games, we can also make clear comparisons when the change in the common distribution of

values can be described by stochastic dominance.

Corollary 2 (Stochastic dominance in symmetric games). Consider two distributions of players’ values, F

and F̂ . All n players’ values are independently and identically distributed, in the first case according to cdf

F , and in the second according to F̂ . If either F first-order stochastically dominates F̂ or F̂ second-order

stochastically dominates F , then K∗ ≥ K̂∗. Moreover, for each possible value, a player’s payoff is at least

as large when the common distribution of values is F as when it is F̂ .

The first part of Corollary 2 follows from repeated application of Proposition 5.b. As the profile of

players’ distributions changes from (F̂ , F̂ , . . . , F̂ ) to (F, F̂ , . . . , F̂ ) to . . . to (F, . . . , F, F̂ ) to (F, . . . , F, F ),

total expected contributions weakly increase. Thus, the total expected efforts at the beginning and end of

this chain of changes satisfy nK̂∗ ≤ nK∗. The second part of Corollary 2 follows from (13), where it is clear

that for any value v1, for example, player 1 is at least as well off when the common distribution of values is F

as when it is F̂ because all other players contribute more under F than under F̂ (i.e., (n−1)K∗ ≥ (n−1)K̂∗).

A graphical derivation of Corollary 2’s contribution ranking is also available. As explained in the proof

of Proposition 5, the change in distributions from F to F̂ (weakly) shifts player 1’s “best response” function

R1 leftward as depicted in Figure 6. The unique equilibrium is symmetric and satisfies the two conditions,

i) K∗ = R1((n− 1)K∗−1) and ii) K∗−1 = (n−1)K∗. In Figure 6 the equilibrium is found at the intersection of

the reaction function (condition i)) and the symmetry line (condition ii)). For the two different distributions,

Figure 6 shows K̂∗ ≤ K∗.
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K−1 = (n− 1)K1

R1 calculated with F

R1 calculated with F̂

K̂∗ K∗

K−1

0 K1

Figure 6: Symmetric equilibria when F FOSD F̂ or F̂ SOSD F

It is worth pointing out that results similar to those in Proposition 5 and Corollaries 1 and 2 have not

been available for the subscription game with fixed threshold, where technical difficulties make situations

with asymmetries or more than two players analytically intractable. In contrast, connections with observed

behavior are easier within our model. For example, increasing a player’s values by first-order stochastic

dominance leads that player, quite naturally, to greater expected contributions. This implication has been

corroborated by the empirical literature on lobbying surveyed by Potters and Sloof (1996).8

As a particular illustration of second-order stochastic dominance in Corollary 2, consider three symmetric

distributions on [0, 1] having mean 1/2. The first is a unit mass at 1/2, the second is the uniform distribution

on [0, 1], and the third is the two-point distribution where 0 and 1/2 each have probability 1/2. These are

ordered by second-order stochastic dominance, with the two-point distribution being the most risky and the

one-point distribution the least. The expected contribution of each player is 1/6 ≈ 0.16667 for the one-point

distribution, 0.17157 for the uniform distribution, and 1/5 = 0.2 for the two-point distribution.

Our results for second-order stochastic dominance may contribute to the literature on the advantages or

disadvantages of ethnic fragmentation in games of trust, team production, social capital, or, more generally,

8Potters and Sloof point out that “several studies indicate that economic interest groups, in particular, tend to give more
money to representatives who join important committees.” Even more directly, “An interest group that has a large stake in
influencing policy-makers and regulatory agents is hypothesized to be more politically active and hence to have a larger impact
on policy ... the stake variables ... are often significant and usually have the predicted sign.” See Potters and Sloof (1996, p. 412
and pp. 416–417) and references therein.
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in cooperative endeavors. Various authors show the effect of increased heterogeneity may be positive or

negative. This vast empirical and theoretical literature is well surveyed by Alesina and La Ferrara (2005),

who identify three ways to formalize how heterogeneity affects economic outcomes: through preferences,

through an influence on available strategies, and through the production function.9 These formalizations

are important and insightful. However, none appears to capture a facet of interethnic relations that plays

an important role in the sociology literature: ignorance about each other because of lack of social contact.10

A natural formalization of the fact that agents are more ignorant about members of other ethnic or racial

groups than about members of their own group is that agents perceive “outsiders” as more risky, in terms of

second-order stochastic dominance.11 Part b of Proposition 5, for the specific case in which the second-order

stochastic dominance ranking applies to a minority of only one agent, yields the surprising result that, in

expectation, total contributions are larger in a non-homogenous group rather than in the homogenous group.

Corollary 2 may be used to extend the comparison to the other extreme case where each agent represents

a different ethnic group. Intermediate and more realistic comparisons appear more complex to decipher

because of the feedback effect generated by how the minority may view the values of the majority, and a full

analysis is beyond the scope of this paper. Nonetheless, we believe that ignorance may be usefully added to

the three-way classification in Alesina and La Ferrara (2005), and its effects can be explored along the lines

of Proposition 5.

Proposition 5 and Corollary 2 have important normative implications as well: they point at free-riding

as the major sources of inefficient underprovision in our framework, rather than asymmetric information. In

fact, total contributions are larger when agents are uncertain about each other’s values. Moreover, in the

presence of private information a weaker definition of efficiency is appropriate. This issue is explored in the

next section.

4 Interim Incentive Efficiency

The main objective of this section is to determine whether the equilibrium allocation in Proposition 3 is

efficient. We maintain the assumption that the threshold cost is uniformly distributed over [0, c̄]. We first

clarify the notion of efficiency we are considering, among the alternatives in the literature for environments

with private information. We then apply the existing characterization results to the equilibrium allocation

in Section 3, establishing that this allocation is not interim incentive efficient.

9See Alesina and La Ferrara (2005, pp. 764–766) and references therein.
10The so-called Contact Theory “...holds that the sharp rupture between the social lives of whites and blacks promotes whites’

ignorance about blacks. This ignorance feeds erroneous, oversimplified, negative beliefs about blacks, which in turn engender
feelings of hostility and discriminatory social and political predispositions toward blacks.” See Jackman and Crane (1986, pp.
460–461) and references therein. Negative beliefs, usually interpreted as prejudice, may be formalized as agents’ preference to
interact with other agents who are similar to themselves, as in Alesina and La Ferrara (2000). Beyond prejudice, ignorance
plays an important role in Contact Theory, and this is the aspect we focus on.

11For example, one may postulate the value of agent i to be the sum of two random variables, with the realization of one
of them being apparent to all other agents that share the same ethnic background of agent i, while the realization remains
unknown to all other agents.



4.1 General Considerations

The notion of efficiency we use is interim incentive efficiency, defined by Holmström and Myerson (1983),

and further characterized by Ledyard and Palfrey (1999 and 2007). This is the same notion used by Laussel

and Palfrey (2003) and Barbieri and Malueg (2008) for the subscription game with known threshold. Before

proceeding further with the welfare analysis, as in many models of threshold provision of a public good,

the issue arises of how, for efficiency considerations, to deal with contributions in excess of the threshold.

Here we follow Nitzan and Romano (1991), Laussel and Palfrey (2003), and Barbieri and Malueg (2008) in

assuming that excess contributions are not wasted, but they accrue to the producer of the public good. We

adopt the formalization of Laussel and Palfrey (2003), who introduce a new agent, the collector, in addition

to the n players described in Section 2, whom we refer to as contributors in this section. The collector is the

only agent that can produce the public good, incurring cost c. The collector is risk-neutral and is privately

informed about c. With this in mind, we can reinterpret our subscription game in Section 2 as a take-it-or-

leave-it offer that contributors make to the collector. Each contributor commits to paying some amount only

if the collector provides the public good, and zero otherwise. After seeing the sum of promised payments, and

taking into consideration the realization of the cost of production c, the collector decides whether to accept

the contributors’ offer. If the offer is rejected, the public good is not produced and all players receive zero

payoffs. If the contributors’ offer is accepted, the public good is produced, the payoff of the collector is the

sum of contributors’ offers minus c, and the payoff of each contributor i is vi− (player i’s contribution), just

as in Section 2. In the subgame perfect equilibrium, the collector accepts those and only those offers that

sum to at least c. Therefore, the contributors’ problem is equivalent to the one solved in Sections 2 and 3.

It is now possible to describe an interim incentive efficient equilibrium allocation. We consider each type

of the collector and each type of each contributor as separate individuals. The equilibrium allocation deriving

from Proposition 3 and from the optimal behavior of the collector described above is interim incentive

efficient if it is not Pareto dominated by another allocation resulting from any incentive compatible, and

individually rational mechanism. Note how this definition of efficiency takes into account the limitations

that private information imposes on the social planner trying to implement alternative allocations. The

definition of individually rational we use is what Ledyard and Palfrey (2007) call “standard”: the utility of

the outside option is constant in type and equal to zero.

Any discussion of interim incentive efficiency requires a discussion of mechanism design. By the Revelation

Principle it suffices to consider only direct mechanisms that are feasible, that is, both incentive compatible

and individually rational. Direct mechanisms are pairs of functions (p, x) defined on [v, v̄] × [0, c̄] (where

[v, v̄] ≡ [v1, v̄1] × · · · × [vn, v̄n]). Each player i reports value v′i and the collector reports c′; then, denoting
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with v′ the vector (v′1, . . . , v
′
n), xi(v

′, c′) is player i’s payment to the collector and p(v′, c′) ∈ [0, 1] is the

probability the good is provided. Under mechanism (p, x), when others report truthfully, player i with value

vi reporting v′i obtains payoff

Ûi(v
′
i|vi) ≡

∫ c̄

0

∫ v̄−i

v−i

(
vip(v−i, v

′
i, c)− xi(v−i, v′i, c)

)
dF−i(v−i) dH(c);

and the collector with cost c reporting c′ obtains payoff

Ûc(c
′|c) ≡

∫ v̄

v

(∑
xi(v, c

′)− c p(v, c′)
)
dF (v).

Define U∗i (vi) ≡ Ûi(vi|vi), i = 1, . . . , n, and U∗c (c) ≡ Ûc(c|c) as the associated truth-telling payoffs. The

Envelope Theorem then implies that, for an incentive compatible mechanism (p, x),

dU∗i (vi)

dvi
=

∫ c̄

0

∫ v̄−i

v−i

p(v−i, v
′
i, c) dF−i(v−i) dH(c)

and

dU∗c (c)

dc
= −

∫ v̄

v

p(v, c′) dF (v);

integration of these two formulas gives payoffs under an incentive compatible mechanism:

U∗i (vi) = U∗i (vi) +

∫ vi

vi

∫ c̄

0

∫ v̄−i

v−i

p(v−i, s, c) dF−i(v−i) dH(c) dFi(s), i = 1, . . . , n; (18)

and, for the collector,

U∗c (c) = U∗c (c̄) +

∫ c̄

c

∫ v̄

v

p(v, s) dF (v) dH(s). (19)

Before we address the interim efficiency of the subscription game equilibrium derived above, we provide a

fairly general sufficient condition for inefficiency of a mechanism in this public good environment. The value

of this sufficient condition is that it does not require the monotonicity of virtual valuations, whether type-

weighted or not, thus covering situations beyond the “regular” case defined in Ledyard and Palfrey (2007).

It is convenient first to define the sum of virtual valuations S(v, c) as follows:12

S(v, c) ≡
∑(

vi −
1− Fi(vi)

fi(vi)

)
−
(
c+

H(c)

h(c)

)

12The virtual valuation for the seller is −
“
c+

H(c)
h(c)

”
, which becomes −2c when H is the uniform distribution on [0, c̄].
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Proposition 6 (A sufficient condition for inefficiency). Let (p, x) be an incentive compatible, individually

rational direct mechanism. Suppose there exists an allocation rule p̃(v, c) such that the following conditions

are satisfied:

1. ∀c,
∫ v̄

v
p̃(v, c) dF (v) ≥

∫ v̄

v
p(v, c) dF (v) and

∫ c̄

0

∫ v̄−i

v−i
p̃(v, c) dF−i(v−i) dH(c) ≥

∫ c̄

0

∫ v̄−i

v−i
p(v, c) dF−i(v−i) dH(c), ∀vi, i;

2. ∀i,
∫ c̄

0

∫ v̄−i

v−i
p̃(v, c) dF−i(v−i) dH(c) is increasing in vi and

∫ v̄

v
p̃(v, c) dF (v) is decreasing in c; and

3. ε ≡
∫ c̄

0

∫ v̄

v
S(v, c)(p̃(v, c)− p(v, c)) dF (v) dH(c) > 0.

Then (p, x) is not interim incentive efficient.

Proof. Condition 1 states that the interim probability of completion for each type is at least as large under

p̃ as under p, while Condition 2 is the usual second-order condition for incentive compatibility of p̃. Con-

dition 3 states that the overall surplus, under incentive compatibility, is larger for p̃ than for p. Because

(p, x) is incentive compatible and individually rational, the “only if” implication Lemma 3 in Ledyard and

Palfrey (2007) then yields

∑
U∗i (vi) + U∗c (c̄) =

∫ c̄

0

∫ v̄

v

S(v, c) p(v, c) dF (v) dH(c),

so that

∫ c̄

0

∫ v̄

v

S(v, c) p̃(v, c) dF (v) dH(c)−
[∑

U∗i (vi) + (U∗c (c̄) + ε)
]

=

∫ c̄

0

∫ v̄

v

S(v, c) p̃(v, c) dF (v) dH(c)−
∫ c̄

0

∫ v̄

v

S(v, c) p̃(v, c) dF (v) dH(c)− ε

=

∫ c̄

0

∫ v̄

v

S(v, c) (p̃(v, c)− p(v, c)) dF (v) dH(c)− ε

= 0,

where the last equality follows from Condition 3. Therefore, the “if” implication of Lemma 3 in Ledyard

and Palfrey (2007), along with Condition 2, imply that, using allocation rule p̃, an incentive compatible and

individually rational mechanism exists in which the utility of the lowest type of each player is the same as

for p, and in which the utility of the worst type for the seller is strictly higher, in particular it is increased by

ε > 0. To conclude the proof, note that Condition 1 and the usual incentive compatibility lemma (Lemma 1
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in Ledyard and Palfrey (2007)) imply each type of the buyer is not hurt by the change in mechanisms, and

each type of the seller is strictly better off.13 This establishes that p is Pareto-dominated by p̃.

The subscription game is an incentive compatible, individually rational (non-direct) mechanism; for any

equilibrium (s1, ..., sn), using the optimal behavior of the collector described above, the equilibrium allocation

rule is the following:

peq(v, c) =





1 if
∑
si(vi) ≥ c

0 if
∑
si(vi) < c.

(20)

We now consider the case of the uniformly distributed threshold, so a unique equilibrium exists and it char-

acterized in Proposition 3. Next, we apply the previous proposition and construct an alternative allocation

rule palt that deviates from peq where peq = 0 and S(v, c) > 0. For a subset of this parameter region, we set

palt = 1, being careful that Condition 2 in Proposition 6 is satisfied.14 We thus obtain the following.

Proposition 7 (Inefficiency). The subscription game with a uniformly distributed uncertain threshold is not

interim incentive efficient.

Proof. Without loss of generality, we may assume for any i that si(v̄i) > 0; otherwise, the contributor is

always inactive and can be disregarded in the analysis below. Define ĉ ≡ (
∑
v̄i −

∑
Ki) /2. Note that, in

equilibrium, the probability of completion is zero for any c ≥ ĉ. At the same time, we have S(v̄, ĉ) =
∑
Ki >

0. Moreover, we choose η > 0 sufficiently small that for any c > ĉ−η, if
∑
si(vi) > c then si(vi) > 0 for all i

(this is ensured by taking η < minj sj(v̄j)). We may also choose η > 0 sufficiently small so that ĉ+η < c̄ and,

by continuity of S, for any c ∈ (ĉ− η, ĉ+ η) and for any profile of values such that
∑
vi ∈ (

∑
v̄i − 2η,

∑
v̄i),

we have S(v, c) > 0.

Observe that if c > ĉ−η, then the good is provided only if all contributions are strictly positive; therefore,

on this restricted region (20) becomes the following:

peq(v, c) =





1 if
∑
vi ≥ geq(c) ≡ 2c+

∑
Ki

0 if
∑
vi < geq(c).

(21)

We now construct the alternative provision function palt(v, c), first defining the function galt. For c ≤ ĉ− η,

define galt(c) = geq(c); for c > ĉ− η, define galt(c) ≡ geq(ĉ− η) + (c− (ĉ− η)). Note these properties of galt:

i. galt(c) ≤ geq(c), for any c ≥ ĉ− η, with equality only at c = ĉ− η;

ii. galt is increasing in c;

13As usual, ε > 0 may alternatively be distributed among all players, to make every type of each player better off.
14A similar strategy of proof for the 2-person double auction appears in Satterthwaite and Williams (1989).
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iii. galt(ĉ+ η) = geq(ĉ− η) + 2η =
∑
v̄i.

These properties are illustrated in Figure 7, which depicts the functions geq and galt (note that the origin

depicted assumes a strictly positive value of
∑
vi). We now define palt as follows:

palt(v, c) =





1 if
∑
vi ≥ galt(c)

0 if
∑
vi < galt(c).

Figure 7 also depicts the relationship between peq and palt (the solid lines bound the regions where values of

peq and palt are as specified).

geq(c) galt(c)

ĉ− η ĉ ĉ+ η c̄
c

∑
v̄i − 2η

∑
v̄i

palt = peq = 1

palt = peq = 0

S(v, c) > 0

peq(v, c) = 0

palt(v, c) = 1

Figure 7: Construction of a Pareto superior allocation function, palt

To complete the proof, we now proceed to verify all conditions of Proposition 6. Condition 1 follows

because, using Property i, we have peq(v, c) ≥ palt(v, c). Condition 2 follows because both peq(v, c) and

palt(v, c) are increasing in each vi and decreasing in c ( the latter because both geq and galt are increasing

in c (see Property ii above)). Moreover, by Property iii, the expected probability of completion for the

seller under palt is continuous at c = ĉ+ η, where it attains the value of zero. Condition 3 follows because,

given Property i, there exist a full-measure set such that palt(v, c) > peq(v, c), and, on that full-measure set,

S(v, c) > 0, as the continuity argument above establishes.
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5 Conclusion

This paper has picked up where Nitzan and Romano (1990) left off, calling for their model with threshold

uncertainty to be extended to allow for private values among contributors.15 Alternatively, one may view

our paper as introducing threshold uncertainty into the private-information subscription game. We have

shown this approach combines the best features of both strands of the literature: our framework adds the

sharpness of prediction of Nitzan and Romano’s model to the interest for applications that models of private

information entail, a potential heretofore unexplored because of technical difficulties. Therefore, the primary

interest in our results, beyond confirming those Nitzan and Romano (1990), lies in the comparison with

models having private values and certain threshold. In particular, adding threshold uncertainty yields much

sharper positive predictions and normative conclusions.

We have established under very general conditions that the introduction of private information into Nitzan

and Romano’s model is still consistent with existence of (a Bayesian) equilibrium, and if the distribution

of threshold uncertainty is concave with support [0, c̄], then the equilibrium is unique. After establishing

these existence and uniqueness results, our analysis focused on the case where the threshold cost is uniformly

distributed over [0, c̄]. Admittedly, this particular introduction of cost uncertainty is special, but we were

more interested in comparative statics regarding the distributions of players’ values,16 and this approach paid

big dividends in that equilibrium was easily characterized and seen to be unique, regardless of the number

of players or their distributions.17 This allowed us to analyze player-specific changes both in intensity

and dispersion of values. Nitzan and Romano’s analysis implies that if the highest possible value of the

cost exceeds the sum of all players’ values, then any equilibrium is classically inefficient—there will be

realizations of cost where it is socially desirable to provide the good but contributions fall short. With

private information about values, interim incentive efficiency is the appropriate measure of efficiency. Our

analysis extends Nitzan and Romano’s negative result: we show that if the maximum possible cost, c̄, is at

least as large as the largest possible sum of players’ values for the good,
∑
v̄i, then the equilibrium is interim

incentive inefficient.

Future work may proceed in two directions. First there is the technical challenge of incorporating cost

distributions other than the uniform distribution on [0, c̄]. Our results for the two-player case are encouraging,

because uniqueness is preserved when H is concave. However, more work is needed to completely describe

the n-player case. One might also consider uniform distributions with support bounded away from 0. Such

distributions raise the possibility that for some realizations of a player’s value, it is certain the good will not

15See Nitzan and Romano (1990, p. 369).
16This is in contrast to McBride (2006), who focused on varying the distribution of cost while having for all players a common

value of the public good.
17Players’ distributions were only assumed to be independent, continuous, and with bounded support.
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be provided (see Alboth et al., 2001, and Barbieri and Malueg, 2008), which introduces some multiplicity of

equilibria. A second area for research would fully investigate how differences among individuals or groups

might hinder or facilitate interactions. Our framework offers a laboratory for studying such effects where

interactions with less familiar groups could be modeled through the relative dispersion in perceived values

of members of own versus different groups.
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Appendix

Proof of Proposition 1. We verify, in order, that the conditions of Corollary 2.1 in Athey (2001) are satisfied.

First, Athey’s measurability condition A1 is satisfied in our framework. She also requires densities

of players’ values to be atomless and bounded, which we have assumed. Her assumption that a player’s

expected payoff, conditional on value being in a convex set, exist and be finite is satisfied because the

(vi − xi)H(
∑
sj(vj)) is bounded and integrable for all nondecreasing functions sj , j 6= i.

Next, her condition i) requires that we can restrict a player’s contributions to a compact interval. Any

contribution exceeding c̄ is strictly dominated by a contribution of c̄. Therefore, we may restrict each player’s

choice of x to the interval [0, c̄], so condition i) is satisfied. Athey’s condition ii) requires the integrand

(vi − xi)H(
∑
xj) to be continuous in (x1, . . . , xn). This is satisfied because we assumed H is continuous.

It only remains to check that Athey’s single-crossing condition (SCC) is satisfied by Ui(x|vi) for any

choice of nondecreasing strategies for players other than i. Let such nondecreasing strategies (sj)j 6=i be

given. Athey’s SCC is stated as follows: for any xH > xL and vH > vL,

Ui(xH | vL)− Ui(xL | vL) ≥ 0 =⇒ Ui(xH | vH)− Ui(xL | vH) ≥ 0 (22)

and

Ui(xH | vL)− Ui(xL | vL) > 0 =⇒ Ui(xH | vH)− Ui(xL | vH) > 0. (23)

For the remainder of the proof, suppose xH > xL and vH > vL. From the definition of Ui we have

Ui(xH | vH)− Ui(xL | vH) ≥ (> ) Ui(xH | vL)− Ui(xL | vL) (24)

⇐⇒ Ui(xH | vH)− Ui(xH | vL) ≥ (> ) Ui(xL | vH)− Ui(xL | vL)

⇐⇒ Pr


xH +

∑

j 6=i

sj(vj) ≥ c


 ≥ (> ) Pr


xL +

∑

j 6=i

sj(vj) ≥ c


 . (25)

Because xH > xL, the weak inequality in (25) is satisfied, implying that (22) is satisfied. Finally, to show

that (23) is satisfied, it suffices to show that if Ui(xH | vL) − Ui(xL | vL) > 0, then the strict inequality in

(25) holds, implying by (24) that (23) holds. We first show that

Ui(xH | vL)− Ui(xL | vL) > 0 =⇒ xL < vL. (26)
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If this is not the case, then

0 < Ui(xH | vL)− Ui(xL | vL) (27)

= (vL − xH) Pr


xH +

∑

j 6=i

sj(vj) ≥ c


− (vL − xL) Pr


xL +

∑

j 6=i

sj(vj) ≥ c


 (28)

≤
[
(vL − xH)− (vL − xL)

]
Pr


xH +

∑

j 6=i

sj(vj) ≥ c




= −(xH − xL) Pr


xH +

∑

j 6=i

sj(vj) ≥ c


 ;

this strict inequality is impossible because xH > xL and probabilities are nonnegative. This contradiction

implies xL < vL. We can now further conclude that

Ui(xH | vL)− Ui(xL | vL) > 0 =⇒ xH < vL. (29)

This must surely be the case because by (26) we know Ui(xL | vL) ≥ 0; therefore the strict inequality in

(27) implies the first term on the right-hand side of (27) must be strictly positive, implying vL − xH > 0.

Rearranging the extremes of (27) and (28) now yields

Pr


xH +

∑

j 6=i

sj(vj) ≥ c


 >

(
vL − xL
vL − xH

)
Pr


xL +

∑

j 6=i

sj(vj) ≥ c


 ≥ Pr


xL +

∑

j 6=i

sj(vj) ≥ c


 , (30)

which establishes the strict inequality in (25).

Proof of Lemma 1. The first step in determining O1(s̃1 + d)(v1) is calculating T2(s̃1 + d)(v1). This is accom-

plished using equation (5), that is

T2(s̃1 + d)(v2) = max {0, v2 − r2(T2(s̃1 + d)(v2), s̃1 + d)} , (31)

as long as all terms on the right-hand side are well-defined for T2(s̃1 + d)(v2) ∈ [0, v2]. The discussion

preceding the statement of Proposition 2 implies that for any v1, 0 ≤ s̃1(v1) + d ≤ v̄1 + v1, so that each

argument of the function h at the denominator in r2 is in between 0 and c̄, because we have assumed

c̄ ≥ v̄1 + v̄2 + max {v1, v2}. Therefore, r2 on the right-hand side of (31) is well-defined, strictly increasing

in its first argument because H is concave, and continuous in its first argument. This implies a solution

to (31) exists, it is unique, and it is in [0, v2] for any v2. This verifies T2(s̃1 + d) is well-defined. Note
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that T2(s1)(v2) is well-defined by the assumption that s1 is part of an equilibrium. We can now show

T2(s̃1 + d)(v2) ≤ T2(s1)(v2). Clearly, the statement is true if T2(s̃1 + d)(v2) = 0, so by way of contradiction

assume T2(s̃1 + d)(v2) > T2(s1)(v2) and T2(s̃1 + d)(v2) > 0 for some v2. We then have

T2(s1)(v2) < T2(s̃1 + d)(v2) (by the contradiction hypothesis)

= v2 − r2(T2(s̃1 + d)(v2), s̃1 + d) (by T2(s̃1 + d)(v2) > 0)

≤ v2 − r2(T2(s1)(v2), s̃1 + d) (by the contradiction hypothesis)

≤ v2 − r2(T2(s1)(v2), s1) (by s1 < s̃1 + d)

≤ T2(s1)(v2), (by definition in (5))

thus obtaining the contradiction T2(s1)(v2) < T2(s1)(v2). This concludes the proof of

T2(s̃1 + d)(v2) ≤ T2(s1)(v2), (32)

which we now use to show

O1(s̃1 + d))(v1) ≡ T1(T2(s̃1 + d))(v1) ≥ T1(T2(s1))(v1) ≡ O1(s1)(v1),

and finish the proof of the lemma. Verification that T1 is well-defined in the previous relation follows as

above. Moreover, the previous relation is automatically true when T1(T2(s1))(v1) = 0. Therefore, by way of

contradiction, suppose that for some v1 we have T1(T2(s1))(v1) > T1(T2(s̃1 +d))(v1) and T1(T2(s1))(v1) > 0.

We then have

T1(T2(s̃1 + d))(v1) < T1(T2(s1))(v1) (by the contradiction hypothesis)

= v1 − r1(T1(T2(s1))(v1), T2(s1)) (by T1(T2(s1))(v1) > 0)

≤ v1 − r1(T1(T2(s̃1 + d))(v1), T2(s1)) (by the contradiction hypothesis)

≤ v1 − r1(T1(T2(s̃1 + d))(v1), T2(s̃1 + d)) (by (32))

≤ T1(T2(s̃1 + d))(v1), (by definition in (5))

thus obtaining a contradiction. This concludes the proof of the lemma establishing monotonicity.

Proof of Lemma 2. The first step is showing equation (11), that is T2(s̃1 + d)(v2) + d > T2(s̃1)(v2). We can

establish all terms involved are well-defined along the lines of the proof of Lemma 1. Clearly, the above

30



statement is true if T2(s̃1)(v2) = 0, so by way of contradiction assume T2(s̃1 + d)(v2) + d ≤ T2(s̃1)(v2) and

T2(s̃1)(v2) > 0 for some v2. We then have

T2(s̃1 + d)(v2) + d ≤ T2(s̃1)(v2) (by the contradiction hypothesis)

= v2 − r2(T2(s̃1)(v2), s̃1) (by T2(s̃1)(v2) > 0)

= v2 − r2(T2(s̃1)(v2)− d, s̃1 + d) (by definition of r2)

≤ v2 − r2(T2(s̃1 + d)(v2), s̃1 + d) (by the contradiction hypothesis)

≤ T2(s̃1 + d)(v2), (by definition in (5))

thus implying d ≤ 0, a contradiction. This concludes the proof of

T2(s̃1 + d)(v2) + d > T2(s̃1)(v2), (33)

which we now use to show

O1(s̃1 + d))(v1) ≡ T1(T2(s̃1 + d))(v1) < T1(T2(s̃1))(v1) + d ≡ O1(s1)(v1) + d,

and finish the proof of the lemma. Verification that T1 is well-defined in the previous relation follows as for

Lemma 1. Moreover, the previous relation is automatically true when T1(T2(s̃1 + d))(v1) = 0. Therefore,

by way of contradiction, suppose that for some v1 we have T1(T2(s̃1 + d))(v1) ≥ T1(T2(s̃1))(v1) + d and

T1(T2(s̃1 + d))(v1) > 0. We then have

T1(T2(s̃1))(v1) + d ≤ T1(T2(s̃1 + d))(v1) (by the contradiction hypothesis)

= v1 − r1(T1(T2(s̃1 + d))(v1), T2(s̃1 + d)) (by T1(T2(s̃1 + d))(v1) > 0)

= v1 − r1(T1(T2(s̃1 + d))(v1)− d, d+ T2(s̃1 + d)) (by definition of r1)

≤ v1 − r1(T1(T2(s̃1)), d+ T2(s̃1 + d)) (by the contradiction hypothesis)

≤ v1 − r1(T1(T2(s̃1)), T2(s̃1)) (by (33))

≤ T1(T2(s̃1)(v1), (by definition in (5))

thus implying d ≤ 0, a contradiction. This concludes the proof of the lemma establishing discounting.

Proof of Lemma 3. Define KN ≡ ∑Ki. The strategy of the proof follows the methodology in Cornes and

Hartley (2007). We begin by showing a unique KN is consistent with system (15), that is the collection of
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“best responses” in (14), or

Ki =
1

2

∫ v̄i

vi

max
{

0, vi −KN +Ki

}
fi(vi)dvi. (34)

Notice that KN = 0 cannot solve the system (15), because v̄i > 0. In what follows, we use fi(vi) = 0 for

vi < vi or vi > v̄i. Define now σi ≡ Ki/K
N , so

σi = Ki/K
N =

1

2
E
[

max
{

0, vi −KN +Ki

} ] 1

KN
(by (14) and (15))

=
1

2
E
[

max
{

0,
vi
KN

− 1 + σi

}]

=
1

2

∫ v̄i

KN−Ki

( vi
KN

− 1 + σi

)
fi(vi) dvi.

Therefore, the relationship

σi =
1

2

∫ v̄i

KN−Ki

( vi
KN

− 1 + σi

)
fi(vi) dvi, (35)

implicitly describes i’s expected share of expected contributions, in equilibrium. Note now that every solution

of (15) must solve (35) with
∑
σi = 1. To show that at most one value of KN is consistent with these two

requirements, we prove σi is strictly decreasing in KN wherever σi > 0. Differentiating both sides of (35)

with respect to KN , we obtain

dσi
dKN

= −0 +
1

2

∫ v̄i

KN−Ki

(
− vi

(KN )2
+

dσi
dKN

)
fi(vi) dvi

=
1

2

(
dσi
dKN

∫ v̄i

KN−Ki

fi(vi) dvi −
1

(KN )2

∫ v̄i

KN−Ki

vifi(vi) dvi

)

=
dσi
dKN

1

2
(1− Fi(K

N −Ki))−
1

2(KN )2

∫ v̄i

KN−Ki

vifi(vi) dvi,

and regrouping, we have

dσi
dKN

(1 + Fi(K
N −Ki)) = − 1

(KN )2

∫ v̄i

KN−Ki

vifi(vi) dvi.

Now note that Ki > 0, by (34), implies KN −Ki < v̄i, so the right-hand side of the previous equation is

strictly negative. We therefore conclude that if Ki > 0, then σi is strictly decreasing in KN , as we wanted

to show. Moreover, as (34) shows, if Ki = 0 (and hence σi = 0) for some value of KN , Ki remains equal

to zero for all larger values of KN . Therefore, only one KN is consistent with (35) and
∑
σi = 1: as soon
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as we find one such value, and we keep increasing KN , non-contributors remain non-contributors and
∑
σi

strictly decreases away from 1. Uniqueness of the equilibrium KN is sufficient to establish that at most one

solution to the system of equations (15) exists, as at most one value of Ki is consistent with each KN . To

see this, consider again equation (34) and rewrite it as

Ki =
1

2

∫ v̄i

KN−Ki

(
vi −KN +Ki

)
fi(vi) dvi.

The derivative of the right-hand side for Ki is (1−Fi(K
N−Ki))/2, which is always smaller then the derivative

of the left-hand side, which is 1. Therefore, at most one value of Ki can solve the previous equation.

Proof of Proposition 4. Totally differentiating (16) with respect to KE we obtain

0 = − dKi

dKE
− 1

2


1− Fi


KE +

∑

j 6=i

Kj)






1 +

∑

j 6=i

dKj

dKE


 ,

which, for contributors, may be rewritten as

− 2

1− Fi(KE +
∑
j 6=i

Kj)

dKi

dKE
−
∑

j 6=i

dKj

dKE
= 1 ∀i, (36)

while for non-contributors Fi(K
E+

∑
j 6=i

Kj) = 1 and dKi

dKE = 0. Denote with m ≤ n the number of contributors

in equilibrium. In what follows, all summations are taken over m. The system of equations (36) may be

expressed in matrix form as




2
1−F1(KE+

P
j 6=1

Kj)
1 1 . . . 1

1 2
1−F2(KE+

P
j 6=2

Kj)
1 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 . . . 1 2
1−Fm(KE+

P
j 6=m

Kj)




︸ ︷︷ ︸
A




−dK1/dK
E

−dK2/dK
E

...

−dKm−1/dK
E

−dKm/dK
E




︸ ︷︷ ︸
−∆

=




1

1

...

1

1




︸ ︷︷ ︸
1

. (37)

The m ×m matrix A may be shown to be non-singular, so the implicit function theorem is applicable. To

establish part a, we use Farkas’ Lemma: −∆ ≥ 0 if there is no solution y to ATy ≥ 0 with 1Ty < 0. By

contradiction, assume such a vector y exists, and consider the first element of ATy:

(
2

1− F1(
∑

j 6=1Kj +KE)

)
y1 + y2 + ...+ ym. (38)
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From 1Ty < 0, we have y2 + ...+ ym < −y1, so the expression in (38) is strictly smaller than

[
2

1− F1(
∑

j 6=1Kj +KE)
− 1

]
y1.

Because the term in square brackets is always positive, the sign of the previous expression only depends on

y1. In particular, if y1 < 0, the chain of inequalities above yields that the term in (38) is strictly negative,

a contradiction to ATy ≥ 0. Therefore, we must have y1 ≥ 0. Repeating this reasoning for all elements of

ATy we obtain that all elements of y are non-negative, thus contradicting 1Ty < 0. Farkas’ Lemma then

implies (−∆) ≥ 0, or that dKi/dK
E ≤ 0 for all i; furthermore, at least one inequality must hold strictly

since otherwise the right-hand side of (37) would be 0. It only remains to show that dKi/dK
E < 0 for all i.

For simplicity, we only consider the case where dK1/dK
E = 0 and dK2/dK

E < 0 and show this leads to a

contradiction. Then the first element of the product A(−∆) is

− dK2

dKE
− dK3

dKE
− · · · − dKm

dKE
, (39)

which is strictly greater than the second element,

−
(

2

1− F2(
∑

j 6=2Kj +KE)

)
dK2

dKE
− dK3

dKE
− dKm

dKE
. (40)

Therefore, (39) and (40) cannot both equal 1, contradicting (37). This completes the proof of part a.

To establish part b, we sum all equations in (37) and obtain

−m =
∑[

(m− 1) +
2

1− Fi(
∑

j 6=iKj +KE)

]
dKi

dKE
< (m+ 1)

∑ dKi

dKE
,

where the inequality follows from part a and the fact that the terms in square brackets is always larger than

(m+ 1). Thus, we obtain
∑
dKi/dK

E > −m/(m+ 1) ≥ −n/(n+ 1), establishing part b.
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