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Abstract

We propose tests for structural parameters in limited dependent variable mod-

els with endogenous explanatory variables using the classical minimum distance

framework. These tests have the correct size whether the structural parameters

are identified or not. Relating to the current tests, the application of ours is appro-

priate especially to models whose moment conditions are nonlinear in parameters.

Moreover, the computation of ours tests is simple, allowing their implementation

in a large number of statistical software packages. We compare our tests with

Wald tests by performing simulation experiments. We use our tests to analyze the

female labor supply and the demand for cigarette.
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1 Introduction

In this paper, we use the classical minimum distance approach to derive tests for

structural parameters in limited dependent variable models with endogenous explanatory

variables. These tests have the correct size even when these parameters are not identified.

The minimum distance approach is specially convenient when the moment conditions

are nonlinear in the parameters.

Lack of parameter identification invalidate Wald, Lagrange multiplier (LM) and

likelihood-ratio (LR) tests, as shown by Staiger and Stock (1997) and Stock and Wright

(2000). In the case of linear instrumental variable models, several tests are robust

to parameter identification failure. We can mention the AR, in Anderson and Rubin

(1949), the K, in Kleibergen (2002), the conditional likelihood-ratio, in Moreira (2003),

the rank-type tests, in Andrews and Soares (2007), among others. For nonlinear models,

the current tests are based on the GMM approach. They depart from the objective

function of the continuous updating estimator. Stock and Wright (2000) formulate the

S-test as an extension of the AR-test. Kleibergen (2005) proposes a new K-test which

is the quadratic form of the score of the continuous updating estimator. In the same

paper he derives the CLR-test which is a function of a rank statistic and is not pivotal.1

The minimum distance approach is based on the definition of link functions, which

relate structural and auxiliary parameters. By avoiding the direct use of moment con-

ditions, the minimum distance permits the construction of robust tests for a class of

models where the use of GMM tests would entail the solution of constrained nonlinear

systems.

From the applied point of view, the tests that we propose are compelling mainly

because of their ease of computation. In many models they can be carried out by using

built-in functions within regular statistical software packages. Moreover, confidence

intervals based on our tests do not require the estimation of untested parameters under

the null hypothesis at every hypothesized value of the parameter of interest.

The convenience of the minimum distance approach, however, goes beyond its ease

of computation. The asymptotic properties of our tests are derived from the asymptotic

properties of the auxiliary parameters and do not depend on the structural parameters.

Necessary conditions for the implementation of our tests are continuity and smoothness

of the link function,
√
n-asymptotically consistency of the auxiliary parameters estimator

1A statistic is called pivotal if its sampling distribution does not depend on unknown parameters.
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and consistency of their variance-covariance matrix estimator. Under these assumptions,

auxiliary parameters can be estimated either parametrically or semiparametrically.

In the next section, we illustrate the application of our tests in the endogenous Tobit

model. Since our tests can be applied to other models, we present their general version

in Section 3. In a simulation experiment, we compare the performance of our tests to

Wald tests. We perform simulations not only for the endogenous Tobit model, but also

for the endogenous count data model. In Section 5 we consider the female labor supply

described by Blundell and Smith (1989) and Lee (1995), and the demand for cigarettes

described by Mullahy (1997) to illustrate the differences between inferences based on

nonrobust tests and ours. We finish the paper with the conclusion. The Appendix

contains all proofs and an algorithm describing the implementation of our tests for a

class of limited dependent variable models.

2 Inference in the Endogenous Tobit Model

The classical minimum distance principle explores the underlying relation between

structural and auxiliary parameters: the estimation of structural parameters is indirectly

obtained from the auxiliary parameters estimates. This principle is widely used in Econo-

metrics for estimation. Examples of models where the use of the minimum distance is

appropriate are: limited dependent variable models with endogenous explanatory vari-

ables (see Newey (1987), Blundell and Smith (1989), Lee (1995), and Blundell et al.

(2007)), linear panel models with unobserved heterogeneity (see Chamberlain (1984)

and Jones and Labeaga (2003)), and autoregressive panel data models with sample selec-

tivity (see Bover and Arellano (1997), and Arellano et al. (1999)). In macroeconomics,

Sbordone (2005) and Li (2008) use the minimum distance estimation in dynamic forward

looking models.

In this section we illustrate the application of our tests using the simple endogenous

Tobit model discussed in Amemiya (1979) and Smith and Blundell (1986). Let hi be the

hours of work provided by individual i, xi her unearned income and wi other relevant

variables such as individual characteristics (age, education, etc.). The labor supply is

represented by:

hi = max {0, xiβ + wiγ + ui} for i = 1, . . . , n (1)
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where β is a scalar and γ is an kw × 1 vector. As Blundell et al. (2007) argue, x is an

endogenous variable because non-observed preference for work may be correlated, for

example, with asset income. Assume that there exists a vector of instruments z, with

dimension 1 × kz, such that:

xi = ziΠz + wiΠw + vi, (2)

and zi is uncorrelated with ui. Our goal is to test the null hypothesis H0 : β = β0 without

imposing any conditions about the identification of β, i.e, without assuming that Πz is

full-ranked. According to Stock and Wright (2000), if Πz is not full-ranked, then the

Lagrange multiplier, the likelihood-ratio and the Wald tests are not well approximated

by their respective asymptotic distributions.

We propose tests that explore the representation of equation (1) in its reduced form:

hi = max {0, ziπz + wiπw + ei} (3)

If the reduced form is equivalent to the structural model, then πz = Πzβ. Since

zi and wi are exogenous in equations (2) and (3), under mild conditions the auxiliary

parameters πz and Πz are consistently estimated regardless if β is identified or not. We

derive tests for β using the restriction:

r(πz,Πz, β) = πz − Πzβ

Our tests are based on the limiting distribution of r(π̂z, Π̂z, β), where π̂z and Π̂z

are, respectively, estimators of πz and Πz. The joint asymptotic distribution of π̂z and

Π̂z is independent of β. Since the asymptotic properties of r(π̂z, Π̂z, β) depends on the

asymptotic properties of π̂z and Π̂z, our tests are sized-correct independent of the rank

of Πz. Their formal derivation is in the next section.

Other identification-robust tests which can be applied to the endogenous Tobit model

are proposed by Kleibergen (2005). These tests are based on the GMM framework.

We argue that the implementation of our tests is more convenient in many situations,

particularly in the endogenous Tobit model.

Kleibergen’s tests require differentiability of the moment condition with respect to

its parameters. A candidate for a smooth moment condition is the score of the likelihood

function, which imposes restrictions on the joint distribution of the residuals. Assuming
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that ui and vi follow a bivariate normal distribution with zero mean and variance-

covariance matrix Σ =
[

σ2
u Σuv : Σvu Σvv

]

, the conditional likelihood function is well

defined and twice differentiable. Define the pseudo-residuals:

e
(1)
i = di

(

yi − w̄iδ

σe

)

− (1 − di)
φi

1 − Φi

e
(2)
i = di

[

(

yi − w̄iδ

σe

)2

− 1

]

− (1 − di)

(

w̄iδ

σe

)

φi

1 − Φi

where:

di =

{

1 if yi > 0

0 otherwise

vi = xi − ziΠz − wiΠw

w̄iδ = xiβ + wiγ + viα

α = Σ−1
vv Σvu

σε = σ2
u − ΣuvΣ

−1
vv Σvu

and φi and Φi are, respectively, the normal density and distribution functions evaluated

at
w̄iδ

σe

. The score function of β, denoted by sβ, is:

sβ =
∑

i

xie
(1)
i

σε

(4)

Note from expression (4) that β is non-separable from γ, α, Πz, Πw, πw and σe.

Although these parameters are not being tested, they must be estimated under the null

hypothesis and substituted in (4). Estimation of the untested parameters consists in

solving 2(kw + 1) + kz non-linear equations, derived from the remaining score fucntions:
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∑

i

[

wi vi

]

′ e
(1)
i

σe

= 0

∑

i

e
(2)
i

2σ2
ε

= 0

∑

i

(

v′ivi

n

)

−1
∑

i

[

zi wi

]

′

vi − α
∑

i

[

zi wi

]

′

e
(1)
i

σε

= 0

A second step is the estimation of the covariance between the Hessian and the score

function. Our procedure represents a great simplification for testing the parameter β,

since the estimation of auxiliary parameters does not require the solution of a constrained

nonlinear equations system, neither the derivation of the asymptotic distribution of the

untested parameters.

The construction of confidence intervals based on our tests is also simpler. The 1−τ
confidence set is formed by β̄’s such that the null hypothesis H0 : β = β̄ is not rejected at

the τ significance level. Using the GMM approach to build confidence intervals involves

the re-estimation of untested parameters at each hypothesized value of β̄. We do not

estimate untested parameters, but only auxiliary parameters, which do not change with

β̄. Therefore, no re-estimation is necessary during our grid search.

Section 4 presents the simulations results for this model, comparing the performance

of our tests and the Wald tests obtained from the maximum likelihood and two-step MD

estimators. Since our tests are not restricted only to the endogenous Tobit model, we

also perform simulations for the endogenous count data model discussed in Mullahy

(1997).

3 Minimum Distance Robust Tests

In this section we present the general version of our robust tests. Consider θ as a

kθ×1 vector representing the auxiliary parameters, and β as a m×1 vector of structural

parameters. The estimator of θ is denoted by θ̂. The true values of θ and β under

the data generating process are, respectively, θ0 and β0. The mapping r : Θ × B →
ℜq, with m ≤ q ≤ kθ, denoted as r(θ, β), represents the restrictions imposed on the
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auxiliary parameters. The minimum distance approach relies on the following regularity

conditions:

Assumption 1. (Regularity conditions)

i. (Limiting distribution of the auxiliary parameters)

√
n(θ̂ − θ0)

d−→ N (0,Λ0) (5)

where Λ0 is a symmetric positive definite covariance matrix.

ii. (Existence of a consistent estimator for the variance-covariance matrix)

There exists Λ̂ such that

Λ̂
p−→ Λ0 (6)

iii. (Continuity and differentiability of the link function)

r(θ, β) is a twice continuous differentiable function on Rkθ × Rm. Under the null

hypothesis H0 : β = β0, r(θ0, β0) = 0. Moreover, rank
[

∂r(θ,β)
∂θ

]

= q.

Assumptions 1.i and 1.ii. assure that the auxiliary parameters estimator is root-N

consistent and asymptotically normal. These assumptions hold independently of the

structural parameter identification. Assumption 1.iii of continuity and differentiability

is standard in minimum distance estimation and inference.

These assumptions deserve further comments:

1) We are not imposing the full rank condition on ∂r(θ,β)
∂β

, a necessary assumption

for estimating β by minimum distance.

2) In the GMM specification, smoothness of the empirical moment is necessary for

the construction of robust tests. The minimum distance approach does not require such

condition. Instead, it relies on the differentiability of the link function (Assumption

1.iii). As a consequence, auxiliary parameters can be estimated semiparametrically. For

example, Lee (1995) uses a symmetry condition to estimate the auxiliary parameters

of an endogenous Tobit model. Because symmetry implies a nondifferentiable moment

restriction, the application of the GMM robust is not possible under this assumption.
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By applying the delta-method, we derive the asymptotic distribution of r(θ̂, β) which,

under the null hypothesis H0 : β = β0, is:

√
n
(

r(θ̂, β0) − r(θ0, β0)
)

d−→ N (0,Ψβ0
) (7)

where:

Ψβ0
=

[

∂r(θ0, β0)

∂θ

]

Λ0

[

∂r(θ0, β0)

∂θ

]

′

The asymptotic behavior of r(θ̂, β0) holds independently of the identification of β.

Define SMD(β) as the objective function of the optimal minimum distance estimator like

in Gourieroux and Monfort (1989):

SMD(β) = n
[

r(θ̂, β)
]

′

Ψ̂−1
β

[

r(θ̂, β)
]

(8)

where:

Ψ̂β =

[

∂r(θ̂, β)

∂θ

]

Λ̂

[

∂r(θ̂, β)

∂θ

]

′

From equation (7), SMD(β) follows a chi-square distribution with q degrees of freedom

under the null hypothesis:

SMD(β0)
d−→ χ2(q) (9)

Remark 1. The SMD-test is similar to the S-test proposed by Stock and Wright (2000)

derived under the GMM framework. However it is important to emphasize the differ-

ences:

1) The link function r(θ̂, β) represents the overidentification restrictions on the aux-

iliary parameters. It is not a sample average of empirical moments.

2) Once θ̂ and Λ̂ are consistently estimated, the continuity of r(θ, β) guarantees that

Ψ̂β is consistent.

3) The limiting distribution of the SMD-test is solely derived from the asymptotic

properties of the auxiliary parameter estimator θ̂.

4) Usually the estimation of untested parameters can be avoided. In Section 2, for
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example, we do not have to estimate γ, α, Πz, Πw, πw nor σe to test β.

The SMD-test tests simultaneously two hypotheses, which are the value of the struc-

tural parameter and the overidentification restrictions. As in Kleibergen (2007) we can

decompose the SMD-test into two orthogonal statistics, namely, KMD and JMD. The for-

mer statistic tests only the value of the structural parameter, while the latter tests only

the overidentification restriction.

Theorem 1. (KMD- and JMD-tests)

Define the KMD- and JMD-tests as:

KMD(β0) = n
[

Ψ̂
−

1

2

β0
r(θ̂, β0)

]′

P̂β0

[

Ψ̂
−

1

2

β0
r(θ̂, β0)

]

(10)

JMD(β0) = n
[

Ψ̂
−

1

2

β0
r(θ̂, β0)

]′

M̂β0

[

Ψ̂
−

1

2

β0
r(θ̂, β0)

]

(11)

where:

P̂β0
= Ψ̂

−
1

2

β0
D̂β0

[

D̂′

β0
Ψ̂−1

β0
D̂β0

]

−1

D̂′

β0
Ψ̂

−
1

2

′

β0

M̂β0
= Iq − P̂β0

D̂β0
=
[

D̂1(β0) . . . D̂m(β0)
]

D̂j(β0) =
∂r(θ̂, β0)

∂βj

−
[

∂

∂θ

(

∂r(θ̂, β0)

∂βj

)]

Λ̂

[

∂r(θ̂, β0)

∂θ

]

′

Ψ̂−1
β0
r(θ̂, β0), j = 1, . . . , m

Under assumption 1 and H0 : β = β0, we have:

KMD(β0)
d−→ χ2(m)

JMD(β0)
d−→ χ2(q −m)

regardless if β is point identified or not. Also,

SMD(β0) = KMD(β0) + JMD(β0) (12)

Proof. See Appendix.

The statistic D̂β0
is asymptotically independent of r(θ̂, β0) under the null hypothesis.

Given assumption C in Stock and Wright (2000), if β is identified, then D̂β0
converges
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in probability to ∂r(θ0,β0)
∂β

. If not, then
√
n D̂β0

converges in distribution to a random

variable. Because of the asymptotic independence between D̂β0
and r(θ̂, β0), the dis-

tribution of the KMD-test, conditional on D̂β0
, is free from nuisance parameters (see

Moreira (2003)). Moreover, its unconditional distribution is pivotal.

The derivative of the SMD with respect to β, as shown in the Appendix, is:

−1

2

∂SMD(β)

∂β
= n r(θ̂, β)′Ψ̂−1

β D̂β (13)

The KMD-test is the quadratic form of equation (13), weighted by its own variance.

The minimum value of SMD(β) coincides with the point where the KMD-test equals

zero. This point is the minimum distance continuous updating estimate (MD-CUE).

The minimum value of the S-test is the GMM-CUE, which is often different from the

MD-CUE.2

From (13), we have that the KMD-test suffers from a spurious decline of power at

inflection and local minimum points of the SMD-test. Close to these points, the value of

the JMD-test approximates to the value of the SMD-test, which has discriminatory power.

Consequently, we may define a new test for the structural parameter, the KJMD-test,

by combining both the KMD- and the JMD-tests. Define τKMD
and τJMD

as the levels of

significance of the KMD- and JMD-tests, respectively. The KJMD-test has approximate

significance level of τ = τKMD
+ τJMD

. Rejection occurs either if KMD rejects at τKMD
or

if JMD rejects at τJMD
.

The SMD-, KMD- and JMD-tests can be adapted in order to test only a subset of

the structural parameter vector. The procedure consists in estimating the untested

parameters under the null hypothesis by the minimum distance CUE estimator. The

tests are calculated by replacing the estimated values into the original tests. However,

if the untested parameters are not identified, the limiting distributions of the tests are

not pivotal. It is possible to pretest the rank of the gradient of the link function with

respect to the untested parameters. The size of the robust statistics is affected by this

pre-test.

Recently, Monte Carlo studies conducted by Startz et al. (2004), in the context

2In the linear instrumental variable model under homoscedastic errors, the CUE-GMM is the same
as the limited information maximum likelihood (LIML). Goldberger and Olkin (1971) show that LIML
has a minimum distance interpretation. In this case, the minimum value of the S and SMD are the
same.
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of linear instrumental variable model, and by Guggenberger and Smith (2005), in the

context of generalized empirical likelihood (GEL), indicate that the size properties of

the K- and the LMGEL-tests for testing a subvector of structural parameters are not

much affected by the identification of the untested parameters.

In many models, the implementation of our tests is feasible just using built-in func-

tions of statistical software packages. Examples are some limited dependent variables

models as the endogenous Tobit and the endogenous Probit. In the Appendix we de-

scribe an algorithm of our tests for the endogenous Tobit model.

4 Simulations

In order to analyze the performance of our tests, we carry out simulations not only for

the Tobit but also for the endogenous count data model as in Mullahy (1997). In this type

of model, the dependent variable, denoted as y, has a count outcome, y ∈ {0, 1, 2, . . .}.
Assume that there is one endogenous variable, x, and kw exogenous variables, w. The

expected conditional mean of y is:

E [y|x, w, η; β, γ] = exp (xβ + wγ) η (14)

where β and γ are the structural parameters of the model. The unobserved variable η is

correlated with x and satisfies E [η] = 1. The unitary mean of η is assumed without loss

of generality since there is a constant term in w. Let z be a row vector of dimension kz

such that E [η|z, w] is a constant, and E [y|x, w, η, z] = E [y|x, w, η]. Assuming that:

xi = ziΠz + wiΠw + vi,

with E [vi|zi, wi] = 0, equation (14) can be written as:

E [y|x, w, η; β, γ] = exp (ziπz + wiπw) ξi (15)

where ξi = exp(vi)ηi.

The general formulae of our tests, when applied to the endogenous Tobit and count
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data models, are:

SMD(β0) =
(

π̂z − Π̂zβ0

)

′

Ψ̂−1
β0

(

π̂z − Π̂zβ0

)

KMD(β0) =
(

π̂z − Π̂zβ0

)

′

Ψ̂−1
β0

ˆ̄Πβ0

(

ˆ̄Π′

β0
Ψ̂−1

β0

ˆ̄Πβ0

)

−1
ˆ̄Π′

β0
Ψ̂−1

β0

(

π̂z − Π̂zβ0

)

where:

Ψ̂β0
=
[

Ikz
−β0Ikz

]

Λ̂
[

Ikz
−β0Ikz

]

′

ˆ̄Πβ0
= Π̂z −

[

0 Ikz

]

Λ̂
[

Ikz
−β0Ikz

]

′

Ψ̂−1
β0

(

π̂z − Π̂zβ0

)

and Ikz
is the identity matrix of dimension kz.

We estimate Π̂z by ordinary least squares. For the endogenous Tobit model, we

estimate πz by the conditional generalized least squares (CGLS) proposed by Newey

(1987), and by the symmetric censored least squares (SCLS) proposed by Powell (1986).

For the endogenous count data model we estimate πz by Poisson quasi-likelihood.

Besides SMD, KMD, JMD and KJMD, we also report the conditional likelihood-ratio

(CLR) test derived by Moreira (2003). Assuming only one endogenous variable, the

minimum distance version of the CLR, under the null hypothesis, is:

CLRMD(β0) =
1

2

{

SMD(β0) − rk(β0) +

√

[SMD(β0) + rk(βo)]
2 − 4JMD(βo)rk(β0)

}

(16)

where:

rk(β0) = n
{

ˆ̄Π′

β0
Ξ̂−1

β0

ˆ̄Πβ0

}

,

Ξ̂β0
= Λ̂ΠzΠz

−
(

Λ̂Πzπz
− β0Λ̂ΠzΠz

)

Ψ̂−1
β0

(

Λ̂πzΠz
− β0Λ̂ΠzΠz

)

,

Λ̂ΠzΠz
is the variance estimate of Π̂z, and Λ̂Πzπz

is the covariance estimate between Π̂z

and π̂z. The asymptotic distribution of the CLRMD is not pivotal and depends on rk(β).

The critical values of this test are calculated by simulating independent values of χ2(1)

and χ2(kz − 1) for a given value of rk(β).

We compare the performance of our tests with Wald tests which, according to our

notation, are:

W(β0) =
(

β̂ − β0

)

V̂−1

β̂

(

β̂ − β0

)
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where β̂ is an estimate of β, and V̂̂β is the variance of β̂ evaluated at β̂.

We simulate observations for both models and compute the rejection frequency of

the tests at significance levels of 10%, 5% and 1%. The KJMD-test uses a significance

level of KMD four times the significance level of JMD. The residuals ui and vi are the

same for each simulation.

4.1 Endogenous Tobit

Consider the endogenous Tobit model discussed in Section 2:

{

hi = max {0, xiβ + wiγ + ui}
xi = ziΠz + wiΠw + vi

We generate 10,000 random samples of 250 observations each, satisfying:

· wi is a unitary constant;

· zi is a 1 × 3 row vector drawn from independent standard normal distributions. It is

the same in all simulations;

· ui and vi have correlation ρuv, ρuv ∈ {0.1, 0.9}. The closer ρuv is to one, the more

endogenous is the model;

· β = 0.5, γ = 0.5;

· Πw assumes different values in order to guarantee that the expected number of censored

observations is approximately 30% in each simulation;

· Πz =
[

Πz1
0 0

]

′

is a 3 × 1 column vector. The value of Πz1
is set according to

µz =
Π′

zZ
′ZΠz

kzσ2
v

where Z =
[

z′1 . . . z′n

]

′

, σ2
v is the variance of vi, and µz is the concentration parameter

divided by kz. We choose µz equal to 10 and 1 to represent cases of strong and weak

identification, respectively.3

3In linear instrumental variable models, Staiger and Stock (1997) suggest that values of µz below 10
indicate that the instruments are weak.
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The residuals ui and vi have symmetric joint distributions. We consider two scenar-

ios. In the first one, the residuals follow a bivariate normal distribution with unitary

variance and correlation ρuv, ρuv ∈ {0.1, 0.9}. The second scenario is different according

to each estimator. In the case of the CGLS, we assume that ui = viα + εi, where vi

follows the t-distribution with 4 degrees of freedom and εi follows the standard normal

distribution. The values of α are fixed such that ρuv is either 0.1 or 0.9. In the simu-

lations with SCLS, we consider a bivariate t-distribution with 4 degrees of freedom and

correlation ρuv.

We use three estimators for β: maximum likelihood, CGLS, and the two-stage SCLS

(see Lee (1995)). In the SCLS case, we use the algorithm proposed by Silva (2001).

This algorithm is a Newton-type method which checks the behavior of the objective

function at each step of iteration. Silva (2001) shows that his algorithm converges faster

and more frequently compared to the original algorithm in Powell (1986). However,

Silva’s algorithm does not eliminate convergence problems. Between 3% and 5% of the

simulations did not converge. Our null hypothesis is H0 : β = 0.5.

[Table 1 about here.]

[Table 2 about here.]

The Wald tests become size distorted when identification decreases. The distortion

varies according to the degree of endogeneity. With µz = 1, the Wald tests estimated

by MLE or CGLS underreject the null hypothesis when ρ = 0.1 and overreject it when

ρ = 0.9. The Wald-CGLS with ρ = 0.9 and normal distribution of the residuals is the

most severe case of overrejection. The Wald-SCLS always underrejects. These results

are related to the bias of the estimators for β: the lower the degree of identification and

the higher the endogeneity, the more upward biased are the estimates.

Differently from the Wald tests, the robust identification minimum distance tests’

performances are not affected by the level of identification nor by the degree of endo-

geneity.
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4.2 Count Data Model

We simulate 10,000 samples with 250 observations each, according to the following

rules:















yi ∼ Poisson(λi)

λi = exp (xiβ + wiγ + ui)

xi = ziΠz + wiΠw + vi

(17)

The variables and the parameters satisfy:

· wi is a unitary constant and Πw = 0;

· β = 0.05;

· zi is a 1×3 row vector. Each element is drawn from the independent standard uniform

distribution. They are the same in all simulations;

· Πz =
[

Πz1
0 0

]

′

is a 3 × 1 column vector. The value of Πz1
is set according to

µz =
Π′

zZ
′ZΠz

kzσ2
v

where Z =
[

z′1 . . . z′n

]

′

, σ2
v is the variance of vi, and µz is the concentration pa-

rameter divided by kz. We choose µz equal to 40 and 1 to represent strong and weak

identification, respectively.

We want to evaluate the performances of the tests when there is overdispersion or

not. In order to simulate a model without overdispersion, we drew ui and vi from a

bivariate uniform distribution on the interval [−0.5, 0.5] and set γ = 0. So, the mean of

yi was limited in the range [1, 1.07] while its variance lied in [1.13, 1.15]. For the model

with overdispersion, ui and vi were drawn from a standard bivariate normal distribution.

In this case, γ = −0.27, so that the mean of yi was in the range [1.3, 1.4] and its variance

was between 4 and 5.

To evaluate how differently the tests perform according to the degree of endogeneity,

we consider two values for ρuv: 0.1 and 0.9.

We test the null hypothesis H0 : β = β0, where β0 = 0.05. Results for µz = 40 are

in Table 3 and for µz = 1, in Table 4. The nonrobust tests are listed according to the

14



method used for estimating β: GMM or two-step MDE. Both estimators follow Mullahy

(1997). The GMM estimator is based on the following empirical moment conditions:

fn(β, γ) =
n
∑

i

[

z′i

w′

i

]

[exp(−xiβ − wiγ)yi − 1] , (18)

while the minimum-distance estimator for the structural parameters is based on the

following restrictions:

πz − Πzβ = 0

πw − Πwβ + γ = 0
(19)

[Table 3 about here.]

[Table 4 about here.]

Changes both in the level of endogeneity and in the level of dispersion affect the

behavior of the Wald tests. These changes are magnified when identification becomes

weaker. In the presence of weak instruments the bias of both point estimators increases,

affecting the size of the tests. In the overdispersion case with µz = 1, for example, the

rejection probability of the Wald-MDE test jumps from 1.31% when ρuv = 0.1 to 23.83%

when ρuv = 0.9 while it is supposed to be 10%. Our tests’ rejection probabilities are

close to the expected asymptotic critical values, regardless of the level of endogeneity,

degree of dispersion or strength of identification.

5 Two Applications

In this section we use the robust tests to construct confidence intervals and regions for

the models of Section 4. The 1 − τ confidence interval or region consists in considering

points of the parameter space which do not reject the null hypothesis H0 : β = β0 at

significance level τ . For each example we compare our confidence intervals with those

constructed by using the Wald tests.
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5.1 Female Labor Supply

The married female labor supply model as in Blundell and Smith (1989) is represented

by:

{

hi = max {0, xiβ + wiγ + ui}
yi = ziΠz + wiΠw + vi

where hi is weakly hours in paid work, xi is other household income measured in

US$1,000.00, which includes unearned income and savings. Besides a constant term,

wi includes demographic variables: female age and its square, education and its square,

child dummy variables and a race dummy variable (1 if non-white, 0 otherwise). More

details are in the Appendix.

The data set, originally obtained from the 1987 cross-section of the Michigan Panel

Data Study of Income Dynamics, is the same as used by Lee (1995). The sample includes

married couples with nonnegative total family income. The wife must be at working age

(18-64) and not self-employed. From the 3,382 married females, 895 were not working,

which is, approximately, 26.4% of the total number of observations.

Besides the estimation methods discussed in the previous section, we consider the

winsorized mean estimator (WME) suggested by Lee (1992) for estimating the auxiliary

parameters. The WME is less restrictive than the Powell’s SCLS estimator because the

latter considers symmetric distribution of the residuals while the former assumes only

local symmetry. On the other hand, the WME demands the definition of a trimming

parameter that imposes local symmetry. As recommended by Lee (1995), our trimming

parameter, denoted by w, is the point that minimizes the sum of the diagonal of the

variances of the WME.

Table 5 displays the results, divided into two groups. In the first group we follow

Mroz (1987) and consider functions of the included instruments as the excluded instru-

ments: cubic terms of wife age and education. In the second group, we add 3 dummy

variables related to the husband’s occupation.4 In the footnote, we report the exogeneity

tests proposed by Smith and Blundell (1986) and the first-stage F -statistic.

[Table 5 about here.]

4see Table 8 in the Appendix.
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The estimated values of β are negative, as expected, and increase after the inclusion

of husband’s occupation dummies. The difference between the first-stage F -statistics

suggests that this increase is due to identification issues in the first model.

On Table 6, we present the 95% confidence intervals derived from the Wald and our

tests.

[Table 6 about here.]

The Wald and our tests, except the SMD-test,5 have the same limiting distribution if β is

identified. In the model with less instruments, the intervals derived from the Wald and

our tests are different. In the SCLS case, the robust confidence intervals are larger than

the nonrobust confidence interval. In the WME case, we observe the opposite. However,

when other instruments are added, confidence intervals become identical. These results

show that estimates in the first model are unreliable, even with the first-stage F -statistic

above 10 and more than 3,000 observations. They suggest that, in the endogenous Tobit,

the identification condition for estimating parameters might be even stronger than in

the linear instrumental variables model.

The confidence intervals of the SMD-CGLS and the KJMD-CGLS tests are empty,

suggesting that the models that assume normality distribution of the residuals are mis-

specified. We cannot reject specifications that rely on the overall and/or local symmetry

according to the same tests.

5.2 Cigarette Demand Function

Mullahy (1997) suggests a Poisson-type regression to investigate the impact of smok-

ing habit on the consumption of cigarette. The data set consists of 6, 160 answers of

males to the Smoking Supplement of the 1979 National Health Interview Survey. To

describe the model, we repeat equation (14):

E (yi|xi, wi, β, ηi;α, γ) = exp (xiβ + wiγ) ηi

where y is the number of smoked cigarettes measured in packs per day. The endoge-

nous explanatory variable xi is the smoking habit stock measure K210.6 The vector of

5The confidence set derived from the SMD-test is larger because its limiting χ2-distribution has more
degrees of freedom than the remaining tests.

6 K210 is an index of the habit-forming effects of prior cigarette consumption.
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included instruments wi contains: the state-level average per-pack cigarette in 1979; the

individual’s age in years and its square; his years of education and its square; his family

income in U$ 1,000.00; a race dummy variable (white equals one, zero otherwise), and a

constant. The author argues that the smoking habit and past unobserved determinants

of smoking are correlated. Since the latter is also correlated with the present unobserved

determinants of smoking, it turns out that smoking habit and unobserved smoking char-

acteristics are also correlated. The instruments used by Mullahy (1997) are: cubic terms

of age and education; an interaction term between age and education; stage-level aver-

age price per-pack cigarette in 1978; and number of years the state’s restaurant smoke

restrictions had been placed in 1979.

The estimates of smoking habit stock and cigarette price are displayed on Table 7.

[Table 7 about here.]

The results in columns (3) and (4) are very close to those reported by Mullahy (1997).

The sign of the estimates are positive for habit stock and negative for cigarette price

and restaurant restriction, as expected. Columns (1)’s and (2)’s first-stage F -statistic is

very low, suggesting that stage-level average price in 1978 and restaurant restrictions are

weak instruments for the smoking habit index. So, the identification of the structural

parameters comes from the remaining instruments, which are functions of the included

exogenous variables.

Figure 1 shows the one minus p-value function derived from the robust and non-

robust tests for the models (3) and (4) on Table 7. The intersection between the one

minus p-value function and the 0.95 horizontal line delimits the 95% confidence interval

for the smoke stock variable.

[Figure 1 about here.]

From equation (13) we know that the CUE-MDE minimizes the SMD-test and, at

this estimate, the KMD-test is zero. The GMM estimate is the minimum value of the

GMM one minus p-value function, and the analogous is valid for the MD estimate. We

observe that the GMM and the CUE-MD estimates are close one to another, but they

are different from the two-step MDE. According to Mullahy, the different values of GMM

and MD estimates are due to the misspecification in the first-stage, which assumes a

linear relation between endogenous variable and instruments. However, the JMD overi-

dentification test does not reject the model with a linear first-stage. We conclude that
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the difference between the two-step MD and the GMM estimates is due to the weak

identification problem and not to a model missspecification. This is clearly captured by

the confidence intervals: the confidence interval generated by Wald-GMM test is just a

subset contained in the robust confidence intervals.

In the next figure we illustrate the impact of weak instruments on the inference of

exogenous variables. We compute 95% confidence regions for the smoking habit stock

and cigarette price parameters using Wald-MDE and Wald-GMM as the nonrobust tests,

and SMD and KJMD as the robust ones.

[Figure 2 about here.]

Differently from the confidence regions of the Wald-tests, the robust tests’ regions

are not elliptic. The Wald-MDE gives a smaller confidence region relatively to the

robust confidence regions. The Wald-GMM confidence region does not cover the same

parameter space as the robust tests’ confidence regions. The panels suggest that the

presence of weak instruments affects the inference of the other exogenous variables in

the model.

A policy question is whether changes in cigarettes prices and adoption of restaurant

restriction affect the demand for cigarettes. We jointly test if cigarette price and restau-

rant restriction are statistically significant, considering habit stock in the range between

0 and 0.012. The Wald-GMM test did not reject the hypothesis that the coefficients are

insignificant at the 5% significance level. In the same range, the robust tests SMD and

KMD reject the same hypothesis at the 1% significance level.

6 Conclusion

We extend weak identification robust tests to models in which nonlinearities in

the moment conditions turn the current GMM tests untractable. Our tests, which

are based on the classical minimum distance principle, avoid non-linearity problems

because they do not require direct inference about the structural parameters. The

crucial assumptions, instead, are about the relation between structural and auxiliary

parameters and the asymptotic behavior of the auxiliary parameters estimator. The

simplicity of this approach extends to its computational implementation, which can be

made by regular statistical software packages. Simulations show that our tests perform

well in case of weak identification and different degrees of endogeneity.
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A Proofs

A.1 Proof of Theorem 1

From assumption 1 and Taylor expansion, the asymptotic join distribution between

r(θ̂, β) and ∂r(θ̂,β)
∂β

, under the null hypothesis, is:

√
n





r(θ̂, β0) − r(θ0, β0)

vec
[

∂r(θ̂,β0)
∂β

− ∂r(θ0,β0)
∂β

]





d→N





[

0

0

]

,





Ψβ0

[

∂r(θ0,β0)
∂θ

]

Λ0F
′

0

F0Λ0

[

∂r(θ0,β0)
∂θ

]

′

F0Λ0F
′

0







 (20)

where:

Ψβ0
=

[

∂r(θ0, β0)

∂θ

]

Λ0

[

∂r(θ0, β0)

∂θ

]

′

F0 =
∂

∂θ

[

vec

(

∂r(θ0, β0)

∂β

)]

Define the following lower-block triangular matrix:





Iq 0q×mq

−F̂0Λ̂
[

∂r(θ̂,β0)
∂θ

]

′

Ψ̂−1
β0

Iq ⊗ Im



 (21)

where F̂0 = ∂
∂θ

[

vec
(

∂r(θ̂,β0)
∂β

)]

. The pre-multiplication of (20) by (21) give us:

√
n





r(θ̂, β0)

vec
[

D̂(β0) − ∂r(θ0,β0)
∂β

]





d−→ N
([

0

0

]

,

[

Ψβ0
0

0 Ξβ0

])

where:

Ξβ0
= F0Λ0F

′

0 − F0Λ0
∂r(θ0, β0)

∂θ

′

Ψ−1
β0

∂r(θ0, β0)

∂θ
Λ0F0

The statistic D̂(β0) is asymptotically independent of r(θ̂, β0) under the null hypoth-
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esis, independently of the rank
[

∂r(θ0,β0)
∂β

]

. In the case of full rank condition, we have:

D̂(β0)
p−→ C

√
n
[

D̂(β0)
′Ψ̂−1

β0
D̂(β0)

]

−
1

2

D̂(β0)
′Ψ̂−1

β0
r(θ̂, β0)

d−→
(

C′Ψ−1
β0

C
)

−
1

2 C′Ψ−1
β0
ψr ≡ N (0, Im)

where C = ∂r(θ0,β0)
∂β

and ψr is a multivariate standard normal distribution with dimension

q. As in Staiger and Stock (1997), if ∂r(θ0,β0)
∂β

is not full ranked, then, we assume:

√
n vec

[

D̂(β0)
]

d−→ ψD

where ψD is a normal distribution with variance Ξβ0
. Therefore:

n D̂(β0)
′Ψ̂−1

β0
r(θ̂, β0)

d−→ ψ′

DΨ−1
β0
ψr

Conditioning on ψD, the limit density function of the above expression is

ψ′

DΨ−1
β0
ψr

∣

∣ψD ≡ N
(

0, ψ′

DΨ−1
β0
ψD

)

Since the ψD and ψr are independent, we have

(

ψ′

D Ψ−1
β0
ψD

)

−
1

2 ψ′

DΨ−1
β0
ψr ≡ N (0, Im)

and

[

D̂(β0)
′Ψ̂−1

β0
D̂(β0)

]

−
1

2

D̂(β0)
′Ψ̂−1

β0
r(θ̂, β0)

d−→ N (0, Im)

unconditionally.

A.2 Derivation of equation (13)

The first order condition of SMD(β) with respect to β is:

−1

2

∂SMD(β)

∂β
= n r(θ̂, β)′Ψ̂−1

β

∂r(θ̂, β)

∂β
+
n

2

(

r(θ̂, β)′ ⊗ r(θ̂, β)′
) ∂vec

(

Ψ̂−1
β

)

∂β
(22)
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The partial derivative of Ψ̂−1
β with respect to β is:

−
{

Ψ̂−1
β ⊗ Ψ̂−1

β

} ∂vec
(

∂r(θ̂,β)
∂θ

Λ̂∂r(θ̂,β)
∂θ

′
)

∂β

−
{

Ψ̂−1
β ⊗ Ψ̂−1

β

}











(

∂r(θ̂, β)

∂θ
Λ̂ ⊗ I

)

∂vec
(

∂r(θ̂,β)
∂θ

)

∂β
+

(

I ⊗ ∂r(θ̂, β)

∂θ
Λ̂

)

∂vec
(

∂r(θ̂,β)
∂θ

′
)

∂β











The second term of equation (22) simplifies to:

(

r(θ̂, β)′Ψ̂−1
β

∂r(θ̂, β)

∂θ
Λ̂ ⊗ r(θ̂, β)′Ψ̂−1

β

)

∂vec
(

∂r(θ̂,β)
∂θ

)

∂β

+

(

r(θ̂, β)′Ψ̂−1
β ⊗ r(θ̂, β)′Ψ̂−1

β

∂r(θ̂, β)

∂θ
Λ̂

)

∂vec
(

∂r(θ̂,β)
∂θ

)

′

∂β

(23)

Using the fact that

∂vec
(

∂r(θ̂,β)
∂θ

)

∂βj

= vec

[

∂

∂βj

(

∂r(θ̂, β)

∂θ

)]

and
∂vec

(

∂r(θ̂,β)
∂θ

)

′

∂βj

= vec

[

∂

∂βj

(

∂r(θ̂, β)

∂θ

)

′
]

,

the jth column of (23) is:

r(θ̂, β)′Ψ̂−1
β

[

∂

∂βj

(

∂r(θ̂, β)

∂θ

)]

Λ̂

(

∂r(θ̂, β)

∂θ

)

′

Ψ̂−1
β r(θ̂, β)

+ r(θ̂, β)′Ψ̂−1
β

(

∂r(θ̂, β)

∂θ

)

Λ̂

[

∂

∂βj

(

∂r(θ̂, β)

∂θ

)

′
]

Ψ̂−1
β r(θ̂, β)

Since both terms are scalars, (23) simplifies to

2 r(θ̂, β)′Ψ̂−1
β

[(

∂
∂β1

(

∂r(θ̂,β)
∂θ

))

. . .
(

∂
∂βm

(

∂r(θ̂,β)
∂θ

))]

Λ̂

(

∂r(θ̂, β)

∂θ

)

′

Ψ̂−1
β r(θ̂, β)
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and (22) becomes:

−1

2

∂SMD(β)

∂β
= n r(θ̂, β)′Ψ̂−1

β D̂(β) (24)

where:

D̂(β) =
[

D̂1(β) . . . D̂m(β)
]

D̂j(β0) =
∂r(θ̂, β0)

∂βj

−
[

∂

∂θ

(

∂r(θ̂, β0)

∂βj

)]

Λ̂

[

∂r(θ̂, β0)

∂θ

]

′

Ψ̂−1
β0
r(θ̂, β0), j = 1, . . . , m
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B Implementation of Robust Tests for a Class of

Limited Dependent Variable Models

The appendix shows an generic algorithm for implementing our tests. This algorithm

is specific for the following class of models:

{

y∗ = xβ + wγ + u

x = zΠz + wΠw + v

where y∗ is latent and x is continuously observed. We assume that u and v is jointly nor-

mally distributed with mean zero and variance-covariance Σ =
[

σuu Σuv

... Σvu Σvv

]

.

Rather then observing y∗, we observe:

y = g(y∗, ν)

This representation is compatible with several limited dependent variable models. To

illustrate the implementation of our robust tests we consider the endogenous Tobit model

as example. The algorithm can be extended to other limited dependent variable models

straight forwardly. The endogenous Tobit model, as presented by Smith and Blundell

(1986), is:

{

yi = max {0, xiβ + wiγ + ui}
xi = ziΠz + wiΠw + vi

The above model has the following reduced-form representation:

{

yi = max {0, ziπz + wiπw + viπv + ei}
xi = ziΠz + wiΠw + vi

where ei = ui − viκ, and κ = Σ−1
vv Σvu. Define the matrix Q̄ as

Q̄ =
[

Qzz Qzw

... Qwz Qww

]

(25)

the quadratic matrix, where Qzz =
∑

i z
′

izi, Qzw = Q′

wz =
∑

i z
′

iwi and Qww =
∑

i w
′

iwi.

Define also Qzz.w = Qzz − QzwQ
−1
wwQwz. We have that Q−1

zz.w the upper right block of
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Q̄−1.

The algorithm test takes the following steps:

1. Estimate Πz and Σvv by OLS. Denote the estimated values as Π̂z and Σ̂vv. Compute

also v̂i, the OLS estimated residuals.

2. Estimate πz and πw using the following Tobit equation:

yi = max {0, ziπz + wiπw + v̂iπv + ẽi}

Denote the estimated values of πz and πw as, respectively, π̂z and π̂w.

3. Save Γ̂πzπz
, the output of the variance-covariance matrix estimate of π̂z. Note that

this is not the “correct” variance-covariance of π̂z since we are not adjusting for

the presence of v̂i.

Now we have all the elements to compute the minimum distance robust tests. Using

the same notation as in the body of the text we have:

r(π̂z, Π̂z, β) = π̂z − Π̂zβ

Ψ̂β = Γ̂πzπz
+ (π̂v − β)′Σ̂vv(π̂v − β)Q−1

zz.w

ˆ̄Πβ = Π̂z −Q−1
zz.wΨ̂−1

β (π̂v − β)(π̂v − β)′Σ̂vv

In this example, the robust tests has the following configuration:

SMD(β) =
(

π̂z − Π̂zβ
)

′

Ψ̂−1
β

(

π̂z − Π̂zβ
)

KMD(β) =
(

π̂z − Π̂zβ
)

′

Ψ̂−1
β

ˆ̄Πβ

(

ˆ̄Π′

βΨ̂−1
β

ˆ̄Πβ

)

−1 ˆ̄Π′

βΨ̂−1
β

(

π̂z − Π̂zβ
)

JMD(β) = SMD(β) − KMD(β)
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C Data Appendix - Married Female Labor Supply

The data set was extracted from 1987 wave of Michigan Panel Study of Income

Dynamics PSID. We rescale the variables in order to match the definition used by

Blundell and Smith (1989).

[Table 8 about here.]
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Tables

Table 1: Size Comparison (in percentage) H0 : β = 0.5, Endogenous Tobit Model, µz =
10a

ρ = 0.1 ρ = 0.9

normal t normal t

ACVb 10 5 1 10 5 1 10 5 1 10 5 1

Wald-MLE 9.66 4.26 0.55 · · · 10.74 6.75 2.64 · · ·
Wald-CGLS 8.59 3.58 0.42 8.87 3.96 0.46 14.50 10.07 4.57 14.48 10.06 4.17
Wald-SCLS 10.24 5.13 1.08 10.79 5.83 1.36 8.52 4.68 1.26 7.73 4.01 0.96

SMD-CGLS 10.24 5.42 1.06 10.36 5.15 1.05 10.40 5.20 0.98 10.27 5.24 1.09
KMD-CGLS 10.21 5.05 0.97 10.18 5.31 1.10 10.21 5.12 0.98 9.92 4.75 0.81
JMD-CGLS 10.31 5.27 1.16 10.29 5.31 1.16 10.02 5.32 1.06 10.93 5.46 1.08
KJMD-CGLS 10.35 4.98 1.04 10.21 5.32 1.13 10.07 5.25 0.92 9.71 4.78 0.89
CLRMD-CGLS 10.38 5.40 0.89 10.08 5.66 1.02 10.18 5.41 0.95 9.97 5.04 0.83

SMD-SCLS 12.36 7.50 2.74 12.05 7.07 2.43 10.23 6.06 2.16 8.41 4.72 1.85
KMD-SCLS 11.27 6.10 1.89 10.90 6.15 1.81 9.22 5.16 1.50 8.34 4.50 1.21
JMD-SCLS 11.65 6.78 2.02 11.19 6.63 2.05 9.11 5.36 1.61 8.11 4.72 1.42
KJMD-SCLS 11.88 7.02 2.23 11.55 6.88 2.23 9.92 5.93 1.90 8.47 4.94 1.54
CLRMD-SCLS 11.41 6.81 1.95 11.10 6.54 1.89 9.52 5.64 1.61 8.46 4.87 1.26

a 10,000 simulations; 250 observations per simulation.
b ACV: asymptotic critical value in percentage.
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Table 2: Size Comparison (in percentage) H0 : β = 0.5 - Endogenous Tobit Model-
µz = 1a

ρ = 0.1 ρ = 0.9

normal t normal t

ACVb 10 5 1 10 5 1 10 5 1 10 5 1

Wald-MLE 2.81 0.73 0.07 · · · 16.61 13.11 8.30 · · ·
Wald-CGLS 3.06 0.76 0.03 3.21 0.77 0.01 43.53 36.68 25.31 43.39 36.87 25.21
Wald-SCLS 3.48 1.04 0.04 4.82 1.75 0.14 8.50 3.58 .39 5.54 2.27 0.20

SMD-CGLS 10.40 5.47 1.11 10.35 5.16 1.15 10.31 5.22 1.01 10.35 5.16 1.15
KMD-CGLS 10.34 5.33 1.10 10.31 4.85 0.87 9.81 5.22 0.87 9.73 4.74 0.84
JMD-CGLS 10.57 5.42 1.06 10.40 5.35 1.18 10.29 5.13 0.96 10.65 5.31 1.09
KJMD-CGLS 10.34 5.13 1.00 9.86 5.03 1.06 9.97 5.13 1.00 9.77 4.85 0.95
CLRMD-CGLS 10.34 5.53 1.06 10.09 5.37 1.06 9.88 5.58 0.88 9.98 5.38 0.83

SMD-SCLS 11.35 6.73 2.22 10.22 6.15 1.82 9.17 5.51 1.90 8.04 4.60 1.39
KMD-SCLS 11.09 6.01 1.77 10.12 5.28 1.39 11.06 6.37 1.93 9.73 5.40 1.57
JMD-SCLS 10.23 5.53 1.50 9.41 5.36 1.48 7.21 3.74 1.17 6.13 3.47 0.97
KJMD-SCLS 11.10 6.42 1.95 10.18 5.75 1.74 10.63 6.34 2.00 9.27 5.40 1.58
CLRMD-SCLS 11.20 7.01 2.16 10.31 6.28 1.69 11.06 6.88 2.14 9.34 5.68 1.64

a 10,000 simulations; 250 observations in each simulation.
b ACV: asymptotic critical value in percentage.
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Table 3: Sizes (in percentage) for testing H0 : β = β0 at 10%, 5% and 1% significance
levels - µz = 40 a

ρuv = 0.1 ρuv = 0.9

regular dispersion overdispersion regular dispersion overdispersion

ACVb 10 5 1 10 5 1 10 5 1 10 5 1

Wald-GMM 7.86 3.27 0.33 10.76 5.45 1.20 9.04 3.85 0.47 17.72 11.15 4.32
Wald-MDE 8.75 3.95 0.41 9.77 4.18 0.60 9.60 4.41 0.66 12.79 7.65 2.88

SMD 10.34 5.62 1.26 11.41 5.87 1.17 10.47 5.69 1.25 12.34 6.46 1.64
KMD 10.69 5.38 1.21 11.59 6.19 1.38 10.66 5.73 1.15 12.50 6.72 1.67
JMD 9.98 5.19 1.09 10.56 5.61 1.07 10.03 5.36 1.16 11.23 5.84 1.30
KJMD 10.49 5.42 1.17 11.67 5.99 1.30 10.41 5.71 1.03 12.37 6.72 1.78
CLRMD 10.84 5.81 1.17 11.69 6.59 1.32 10.69 6.17 1.15 12.45 7.09 1.66

a 10,000 simulations; 250 observations in each simulation.
b ACV: asymptotic critical value in percentage.
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Table 4: Sizes (in percentage) for testing H0 : β = β0 at 10%, 5% and 1% significance
levels - µz = 1a

ρuv = 0.1 ρuv = 0.9

regular dispersion overdispersion regular dispersion overdispersion

ACVb 10 5 1 10 5 1 10 5 1 10 5 1

Wald-GMM 2.35 0.56 0.01 13.79 7.79 1.93 4.2 1.28 0.09 28.89 19.04 6.49
Wald-MDE 1.23 0.30 0.00 1.31 0.29 0.01 3.94 1.49 0.11 23.83 14.68 4.23

SMD 10.78 5.82 1.35 11.76 6.30 1.60 10.26 5.19 0.96 12.41 6.32 1.33
KMD 10.77 5.92 1.22 11.68 5.78 1.44 10.43 5.39 1.24 12.23 6.50 1.44
JMD 10.04 5.52 1.30 11.20 5.69 1.35 9.84 5.06 0.90 11.40 5.92 1.25
KJMD 11.16 5.94 1.31 11.55 6.14 1.44 10.11 4.99 1.18 12.49 6.47 1.43
CLRMD 11.06 5.74 1.37 11.77 6.36 1.53 10.09 5.50 1.18 12.46 6.62 1.39

a 10,000 simulations; 250 observations in each simulation.
b ACV: asymptotic critical value in percentage.
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Table 5: Female Labor Supply - Weekly hours in paid work a

Estimation Method β |t|-value overidentification instruments b

p-value

MLE c -0.057 (1.78) · (a)

CGLS -0.077 (0.82) 0.001 (a)

SCLS -0.111 (0.88) 0.35 (a)

WME (w = 11) -0.173 (0.91) 0.05 (a)

MLE d -0.037 (1.01) · (a) + (b)

CGLS -0.044 (0.85) 0.003 (a) + (b)

SCLS -0.084 (1.45) 0.20 (a) + (b)

WME (w = 15) -0.119 (2.08) 0.45 (a) + (b)

a Number of observations: 3,382. The absolute value of the t -statistics are in
parentheses.

b (a) age×education, age3, education3, age2×education, and age×education2.
(b) 3 male occupation dummies.

c Exogeneity t-test: -0.56. First-stage F -statistic: 15.08.
d Exogeneity t-test: -3.29. First-stage F -statistic: 32.15.
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Table 6: 95% Confidence Interval - Other Household Income

Estimation Method Instruments

(a) (a)+(b)

CGLS Wald [−0.26, 0.11] [−0.15, 0.06]

SMD ∅ ∅
KJMD ∅ ∅
CLRMD [−0.28, 0.16] [−0.14, 0.08]

SCLS Waldc [−0.36, 0.14] [−0.20, 0.03]

SMD [−0.59, 0.23] [−0.23, 0.06]

KJMD [−0.79, 0.14] [−0.20, 0.03]

CLRMD [−0.60, 0.13] [−0.20, 0.03]

WME Wald [−0.55, 0.20] [−0.23, −0.01]

SMD [−0.26, 0.09] [−0.30, 0.05]

KJMD [−0.57, 0.15] [−0.23, −0.01]

CLRMD [−0.38, 0.12] [−0.23, −0.01]

a Number of observations: 3,382.
b (a) age×education, age3, education3, age2×education, and age×

education2.
(b) 3 male occupation dummies.

35



Table 7: Cigarette Demand Function Estimatesa

Dependent Variable: smoked cigarettes per day (in packs)

Variable Estimation Method

MDE GMM MDE GMM

(1) (2) (3) (4)

Habit Stock 0.0117 0.0035 0.0061 0.0040

(1.06) (0.93) (2.60) (1.66)

Cigarette Price -0.0026 -0.0096 -0.0044 -0.0084

(0.49) (1.98) (1.61) (1.91)

Restaurant Restriction -0.0174 -0.0476 -0.0684 -0.059

(0.16) (0.90) (1.80) (1.15)

Instrumental variablesb (a) (a) (a)+(b) (a)+(b)

Overidentification test p-value 0.18 0.24 0.16 0.05

a Number of observations: 6160.
The absolute value of the t -statistics are in parentheses. First-stage F -
statistic on the excluded instruments are 0.21 for columns 1 and 2, and
5.90 for columns 3 and 4.

b (a) - stage-level average price per-pack cigarette in 1978, number of years
the state’s restaurant smoking restrictions had been placed.
(b) - age3, education3, and age × education.
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Table 8: Definition of the variables, 3382 observations, 895 left-censored, 1987 US PSID

Variable Definition

h wife’s working hours per weak

x other household’s income in $1000

age Age-40
10

, where Age is wife’s age in years

age2
(Age−40)2

100

educ (Education − 8), where Education is wife’s education in years

educ2 (Education − 8)2

C1 1 for any child between ages 0 to 5 and 0 otherwise
C2 1 for any child between ages 6 to 13 and 0 otherwise
C3 1 for any child between ages 14 to 17 and 0 otherwise
Race 1 if non-white and 0 otherwise
Husband occ 1 1 if husband is manager or professional and 0 otherwise
Husband occ 2 1 if husband is sales worker or clerical or craftsman and 0 otherwise
Husband occ 3 1 if husband is farm-related worker and 0 otherwise
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Figure 1: One minus p-value for statistics that test the value of habit stock parameter
at different values of the segment line. Key: SMD, solid line; KMD, dashed line; JMD,
dashed-dotted line; CRLMD, dotted line; GMM, circle; MDE, plus.
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Figure 2: 95% confidence interval for habit stock (β) and cigarette price (γ). Key:
Top left: MDE, solid line and SMD, dotted. Top right: MDE, solid line and KJMD,
dotted. Bottom left: GMM, solid line and SMD, dotted. Bottom right: GMM, solid line
and KJMD, dotted.
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